GTPase activity of dynamin and resulting conformation change are essential for endocytosis (original) (raw)
References
Urrutia, R., Henley, J. R., Cook, T. & McNiven, M. A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl Acad. Sci. USA94, 377–384 (1997). ArticleADSCAS Google Scholar
van der Bliek, A. M. Functional diversity in the dynamin family. Trends Cell Biol.9, 96–102 (1999). ArticleCAS Google Scholar
Warnock, D. E., HInshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem.271, 22310–22314 (1996). ArticleCAS Google Scholar
Roos, J. & Kelly, R. B. Is dynamin really a ‘pinchase’? Trends Cell Biol.7, 257–259 (1997). ArticleCAS Google Scholar
Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). ArticleADSCAS Google Scholar
Poodry, C. A. & Edgar, L. Reversible alterations in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. J. Cell Biol.81, 520–527 (1979). ArticleCAS Google Scholar
Kosaka, T. & Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol.14, 207–225 (1983). ArticleCAS Google Scholar
Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci.9, 3844–3860 (1989). ArticleCAS Google Scholar
van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol.122, 553–563 (1993). ArticleCAS Google Scholar
Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol.122, 565–578 (1993). ArticleCAS Google Scholar
Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol.127, 915–934 (1994). ArticleCAS Google Scholar
Takei, K., McPherson, P. S., Schmid, S. L. & DeCamilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTPγS in nerve terminals. Nature374, 186–190 (1995). ArticleADSCAS Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998). ArticleCAS Google Scholar
Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell94, 131–141 (1998). ArticleCAS Google Scholar
Stowell, M. H. B., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biology1, 27–32 (1999). ArticleCAS Google Scholar
Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Bio.1, 33–39 (1999). ArticleCAS Google Scholar
Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J.16, 6676–6683 (1998). Article Google Scholar
Prakash, B., Renault, L., Praefcke, G. J., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J.19, 4555–4564 (2000). ArticleCAS Google Scholar
Okamoto, P. M., Tripet, B., Litowski, J., Hodges, R. S. & Vallee, R. B. Multiple distinct coiled-coils are involved in dynamin self-assembly. J. Biol. Chem.274, 10277–10286 (1999). ArticleCAS Google Scholar
Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J.9, 2351–2359 (1990). ArticleCAS Google Scholar
Otero, A. D. Transphosphorylation and G protein activation. Biochem. Pharmacol.39, 1399–1404 (1990). ArticleCAS Google Scholar
Wilson-Kubalek, E. M., Brown, R. E., Celia, H. & Milligan, R. A. Lipid nanotubes as substrates for helical crystallization of macromolecules. Proc. Natl Acad. Sci. USA95, 8040–8050 (1998). ArticleADSCAS Google Scholar
Hopkins, C. R. & Trowbridge, I. S. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol.97, 508–521 (1983). ArticleCAS Google Scholar
Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol.9, 257–260 (1999). ArticleCAS Google Scholar
Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor mediated endocytosis. Mol. Cell. Biol.19, 1410–1415 (1999). ArticleCAS Google Scholar
Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. A model for dynamin self-assembly based on binding between three different protein domains. J. Biol. Chem.274, 14942–14947 (1999). ArticleCAS Google Scholar
Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem.272, 13419–13425 (1997). ArticleCAS Google Scholar
Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell8, 2003–2015 (1997). ArticleCAS Google Scholar
Owen, D. J. et al. Crystal structure of the Amphiphysin-2 SH3 domain and its role in prevention of dynamin ring formation. EMBO J.17, 5273–5285 (1998). ArticleCAS Google Scholar