Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology (original) (raw)
Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408, 796– 815 (2000). ArticleCAS Google Scholar
Theologis, A. et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature408, 816– 820 (2000). ArticlePubMed Google Scholar
Lin, X. Y. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature402, 761– 768 (1999). ArticleCASPubMed Google Scholar
Salanoubat, M. et al. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature408, 820– 822 (2000). ArticleCASPubMed Google Scholar
Mayer, K. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature402, 769– 777 (1999). ArticleCASPubMed Google Scholar
Tabata, S. et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature408, 823– 826 (2000). ArticleCASPubMed Google Scholar
Liu, B.-H. Statistical Genomics: Linkage, Mapping and QTL Analysis (Boca Raton, Florida, USA, 1998).An excellent overview of QTL mapping techniques. Google Scholar
Burr, B. & Burr, F. A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet.7, 55–60 ( 1991). CASPubMed Google Scholar
Moreno-Gonzalez, J. Efficiency of generations for estimating marker-associated QTL effects by multiple regression. Genetics135, 223– 231 (1993). ArticleCASPubMedPubMed Central Google Scholar
Sax, K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics8, 552– 560 (1923).The first mapping of a QTL by association with a Mendelian marker. ArticleCASPubMedPubMed Central Google Scholar
Lister, C. & Dean, C. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J.4, 745–750 ( 1993). ArticleCAS Google Scholar
Cho, R. J. et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genet.23, 203– 207 (1999). ArticleCASPubMed Google Scholar
Barton, N. H. & Turelli, M. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet.23, 337–370 (1989). ArticleCASPubMed Google Scholar
Lande, R. The response to selection on major and minor mutations affecting a metrical trait. Heredity50, 47– 65 (1983). Article Google Scholar
Orr, H. A. & Coyne, J. A. The genetics of adaptation: a reassessment . Am. Nat.140, 725–742 (1992).The landmark paper that exhumed the argument that genes of major effect could be important in adaptation. ArticleCASPubMed Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (Dover, New York, 1958). Google Scholar
Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. J. & Koornneef, M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA96, 4710–4717 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Stanton, M. L. Seed variation in wild radish: effect of seed size on components of seedling and adult fitness. Ecology65, 1105– 1112 (1984). Article Google Scholar
Fisher, R. A. The use of multiple measurements in taxonomic problems. Ann. Eugen.7, 179–188 ( 1936). Article Google Scholar
Juenger, T., Purugganan, M. D. & Mackay, T. F. C. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics156, 1379–1392 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kelly, M. G. & Levin, D. A. Directional selection on initial flowering date in Phlox drummondii (Polemoniaceae). Am. J. Bot.87, 382–391 ( 2000). ArticleCASPubMed Google Scholar
Kowalski, S. P., Lan, T. H., Feldmann, K. A. & Paterson, A. H. QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol. Gen. Genet.245, 548– 555 (1994). ArticleCASPubMed Google Scholar
Mitchell-Olds, T. Genetic constraints on life history evolution — quantitative trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution50, 140–145 ( 1996). PubMed Google Scholar
Kuittinen, H., Sillanpää, M. J. & Savolainen, O. Genetic basis of adaptation: flowering time in Arabidopsis thaliana. Theor. Appl. Genet.95, 573–583 (1997). Article Google Scholar
Byrne, M. et al. Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet.94, 674–681 (1997). Article Google Scholar
Byrne, M., Murrell, J. C., Owen, J. V., Williams, E. R. & Moran, G. F. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor. Appl. Genet.95, 975–979 (1997). ArticleCAS Google Scholar
Hurme, P., Silanpää, M. J., Arjas, E., Repo, T. & Savolainen, O. Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics156, 1309–1322 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Bradshaw, H. D. Jr & Stettler, R. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics139, 963– 973 (1995). ArticleCASPubMed Google Scholar
Frewen, B. E. et al. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics154, 837–845 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974). Google Scholar
Gottlieb, L. D. Genetics and morphological evolution in plants. Am. Nat.123, 681–709 (1984). An early, but underappreciated, paper that raised the issue that genes of major effect could be important in speciation. Article Google Scholar
Coyne, J. A. & Lande, R. The genetic basis of species differences in plants. Am. Nat.126, 141– 145 (1985). Article Google Scholar
Bradshaw, H. D. Jr, Wilbert, S. M., Otto, K. G. & Schemske, D. W. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature376, 762–765 ( 1995).One of the first attempts in natural populations to identify genes that are important in speciation by QTL mapping. ArticleCAS Google Scholar
Bradshaw, H. D. Jr, Otto, K. G., Frewen, B. E., McKay, J. K. & Schemske, D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics149, 367–382 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schemske, D. W. & Bradshaw, H. D. Jr. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl Acad. Sci. USA96, 11910–11915 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kelly, A. J. & Willis, J. H. Polymorphic microsatellite loci in Mimulus guttatus and related species. Mol. Ecol.7, 769–774 (1998). ArticleCAS Google Scholar
Cruzan, M. B. & Arnold, M. L. Ecological and genetic associations in an Iris hybrid zone. Evolution47, 1432–1445 (1993). ArticlePubMed Google Scholar
Arnold, M. L. Anderson's paradigm: Louisiana irises and the study of evolutionary phenomena . Mol. Ecol.9, 1687–1698 (2000). ArticleCASPubMed Google Scholar
Hodges, S. A. & Arnold, M. L. Floral and ecological isolation between Aquilegia formosa and Aquilegia pubescens. Proc. Natl Acad. Sci. USA91, 2493– 2496 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rieseberg, L. H., Sinervo, B., Linder, C. R., Ungerer, M. C. & Arias, D. M. Role of gene interactions in hydrid speciation: evidence from ancient and experimental hybrids. Science272, 741–745 ( 1996). ArticleCASPubMed Google Scholar
Kim, S.-C. & Rieseberg, L. H. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression . Genetics153, 965–977 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rieseberg, L. H., Whitton, J. & Gardner, K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics152, 713–977 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hodges, S. A., Burke, J. M. & Arnold, M. L. Natural formation of Iris hybrids: experimental evidence on the establishment of hybrid zones. Evolution50, 2504–2509 (1996). ArticlePubMed Google Scholar
Stuber, C. W. Mapping and manipulating quantitative traits in maize. Trends Genet.11, 477–481 ( 1995). ArticleCASPubMed Google Scholar
Young, N. D. A cautiously optimistic vision for marker-assisted breeding. Mol. Breed.5, 505–510 ( 1999). Article Google Scholar
Grandillo, S., Ku, H. M. & Tanksley, S. D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet.99, 978–987 (1999). ArticleCAS Google Scholar
Alpert, K. B., Grandillo, S. & Tanksley, S. D. fw-2.2 — a major QTL controlling fruit weight is common to both red-fruited and green-fruited tomato species. Theor. Appl. Genet.91, 994–1000 (1995). ArticleCASPubMed Google Scholar
Alpert, K. B. & Tanksley, S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc. Natl Acad. Sci. USA93, 15503–15507 (1996). ArticleCASPubMedPubMed Central Google Scholar
Frary, A. et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science289, 85– 88 (2000).A landmark in QTL analysis: the first molecular characterization of a locus that was originally identified entirely by QTL mapping. References51–53are the prologue to this milestone. ArticleCASPubMed Google Scholar
Doebley, J. & Stec, A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations . Genetics134, 559–570 (1993). ArticleCASPubMedPubMed Central Google Scholar
Doebley, J., Stec, A. & Gustus, C. Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics141, 333–346 (1995). ArticleCASPubMedPubMed Central Google Scholar
White, S. & Doebley, J. Of genes and genomes and the origin of maize. Trends Genet.14, 327– 332 (1998). ArticleCASPubMed Google Scholar
Dorweiler, J., Stec, A., Kermicle, J. & Doebley, J. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution . Science262, 233–235 (1993). ArticleCASPubMed Google Scholar
Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature386, 485–488 ( 1997). ArticleCASPubMed Google Scholar
Wang, R. L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature398, 236–239 ( 1999).References55–62chronicle a decade of work on understanding the genetics of the domestication of modern maize. ArticleCASPubMed Google Scholar
Paterson, A. H. et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science269, 1714–1718 (1995). An excellent example of the power of comparative QTL mapping. ArticleCASPubMed Google Scholar
Ramsey, J. & Schemske, D. W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst.29, 467–501 ( 1998). Article Google Scholar
Soltis, P. S. & Soltis, D. E. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl Acad. Sci. USA97, 7051–7057 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Hilu, K. W. Polyploidy and the evolution of domesticated plants. Am. J. Bot.80, 1494–1499 ( 1993). Article Google Scholar
Jiang, C. X., Wright, R. J., El-Zik, K. M. & Paterson, A. H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Natl Acad. Sci. USA95 , 4419–4424 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wright, R. J., Thaxton, P. M., El-Zik, K. M. & Paterson, A. H. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics149, 1987– 1996 (1998). ArticleCASPubMedPubMed Central Google Scholar
Beavis, W. D. The power and deceit of QTL experiments: lessons from comparative QTL studies . Proc. Corn and Sorghum Industry Res. Conf., Am. Seed Trade Assoc., Washington DC, 255–266 ( 1994).
Beavis, W. D. in Molecular Dissection of Complex Traits (ed. Paterson, A. H.) 145 –162 (CRC, Boca Raton, Florida, 1998 ).References70and71provided the first and most influential caveats for the use of QTL analysis in both agriculture and evolutionary biology. Google Scholar
Copenhaver, G. P., Browne, W. E. & Preuss, D. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl Acad. Sci. USA95, 247–252 (1998). ArticleCASPubMedPubMed Central Google Scholar
Begun, D. J. & Aquadro, C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster . Nature356, 519–520 (1992). ArticleCASPubMed Google Scholar
Risch, N. J. Searching for genetic determinants in the new millennium. Nature405, 847–856 ( 2000). ArticleCASPubMed Google Scholar
Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet.26, 151–157 (2000). ArticleCASPubMed Google Scholar
Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet.2, 91– 99 (2001). ArticleCASPubMed Google Scholar
Doerge, R. W., Zeng, Z. B. & Weir, B. S. Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat. Sci.12, 195–219 (1997). An excellent overview of the statistical issues involved in QTL analysis. Article Google Scholar
Melchinger, A. E., Utz, H. F. & Schon, C. C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics149, 383–403 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Otto, S. P. & Jones, C. D. Detecting the undetected: estimating the total number of loci underlying a quantitative trait. Genetics156, 2093–2107 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Paterson, A. H. et al. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics127, 181–197 ( 1991). ArticleCASPubMedPubMed Central Google Scholar
Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet.11, 241–247 ( 1995). ArticleCASPubMed Google Scholar
Lander, E. S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics121, 185–199 (1989). In this paper, interval mapping with molecular markers to map QTL was first proposed for species in which many morphological markers were unavailable. A maximum-likelihood statistical approach for QTL mapping was also developed. ArticleCASPubMedPubMed Central Google Scholar
Knott, S. A. & Haley, C. S. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics132, 1211–1222 (1992). ArticleCASPubMedPubMed Central Google Scholar
Doerge, R. W. & Churchill, G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics142 , 285–294 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sillanpää, M. J. & Arjas, E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data . Genetics148, 1373–1388 (1998). ArticlePubMedPubMed Central Google Scholar
Haley, C. S., Knott, S. A. & Elsen, J.-M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics136, 1195–1207 (1994). ArticleCASPubMedPubMed Central Google Scholar
Hoeschele, I., Uimari, P., Grignola, F. E., Zhang, Q. & Gage, K. M. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics147, 1445–1457 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Sillanpää, M. J. & Arjas, E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data . Genetics151, 1605–1619 (1999). ArticlePubMedPubMed Central Google Scholar
Pérez-Enciso, M. & Varona, L. Quantitative trait loci mapping in F2 crosses between outbred lines. Genetics155, 391–405 ( 2000). ArticlePubMedPubMed Central Google Scholar
George, A. W., Visscher, P. M. & Haley, C. S. Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics156 , 2081–2092 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hoeschele, I. in Handbook of Statistical Genetics (eds Balding, D., Bishop, M. & Cannings, C.) 599–644 (John Wiley & Sons Ltd, London, 2001). Google Scholar
Liu, S.-C., Lin, Y.-R., Irvine, J. E. & Paterson, A. H. in Molecular Dissection of Complex Traits (ed. Paterson, A. H.) 95–101 (CRC, Boca Raton, Florida, 1998). Google Scholar
Ming, R. et al. Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes . Genetics150, 1663–1682 (1998). ArticleCASPubMedPubMed Central Google Scholar
Doerge, R. W. & Craig, B. A. Model selection for quantitative trait locus analysis in polyploids. Proc. Natl Acad. Sci. USA97, 7951–7956 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rieseberg, L. H. & Buerkle, C. A. Genetic mapping in hybrid zones. Am. Nat. (in the press).
Provine, W. B. The Origins of Theoretical Population Genetics (Chicago Univ. Press, Illinois, 1971).A superb history of the early conflict between the 'Mendelians' and the 'biometricians', and its resolution. Google Scholar
East, E. M. A Mendelian interpretation of variation that is apparently continuous. Am. Nat.44, 65–82 ( 1910). Article Google Scholar
Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance . Trans. R. Soc. Edinb.52, 399– 433 (1918). Article Google Scholar
Lande, R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res.26, 221– 235 (1976). Article Google Scholar
Lande, R. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution33, 402– 416 (1979). ArticlePubMed Google Scholar
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution37, 1210 –1226 (1983). ArticlePubMed Google Scholar
Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution39, 505–522 (1985). ArticlePubMed Google Scholar
Turelli, M. & Barton, N. H. Dynamics of polygenic characters under selection. Theor. Popul. Biol.38, 1–57 (1990). Article Google Scholar
Turelli, M. & Barton, N. H. Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? Genetics138, 913–941 ( 1994). ArticleCASPubMedPubMed Central Google Scholar
Robertson, A. in Heritage from Mendel (ed. Brink, A.) 265– 280 (Wisconsin Univ. Press, Madison, Wisconsin, 1967 ). Google Scholar
Haley, C. S. & Knott, S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity69, 315–324 ( 1992). ArticleCASPubMed Google Scholar
Zeng, Z.-B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl Acad. Sci. USA90, 10972–10976 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zeng, Z.-B., Kao, C. H. & Basten, C. J. Estimating the genetic architecture of quantitative traits. Genet. Res.74, 279– 289 (1999). ArticleCASPubMed Google Scholar
Basten, C. J., Weir, B. S. & Zeng, Z.-B. QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping (Department of Statistics, North Carolina Univ. Press, Raleigh, North Carolina, 1995). Google Scholar
Reinisch, A. J. et al. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics138, 829– 847 (1994). ArticleCASPubMedPubMed Central Google Scholar