Hunter, T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Phil. Trans. R. Soc. Lond. B353, 583–605 (1998). ArticleCAS Google Scholar
Plowman, G. D., Sudarsanam, S., Bingham, J., Whyte, D. & Hunter, T. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc. Natl Acad. Sci. USA96, 13603–13610 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Robinson, D. R., Wu, Y. M. & Lin, S. F. The protein tyrosine kinase family of the human genome. Oncogene19, 5548–5557 (2000). ArticleCASPubMed Google Scholar
Blume-Jensen, P. & Hunter, T. in Encyclopedia of Cancer (ed. Bertino, J. R.) (Academic, San Diego, in the press).
Heldin, C.-H. Dimerization of cell surface receptors in signal transduction. Cell80, 213–223 (1995). ArticleCASPubMed Google Scholar
Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem.69, 373–398 (2000). ArticleCASPubMed Google Scholar
Hubbard, S. R., Mohammadi, M. & Schlessinger, J. Autoregulatory mechanisms in protein-tyrosine kinases. J. Biol. Chem.273, 11987–11990 (1998). ArticleCASPubMed Google Scholar
Jiang, G. & Hunter, T. Receptor signaling: when dimerization is not enough. Curr. Biol.9, R568–R571 (1999). ArticleCASPubMed Google Scholar
Shewchuk, L. M. et al. Structure of the Tie2 RTK domain. Self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure Fold. Des.8, 1105–1113 (2000). ArticleCASPubMed Google Scholar
Binns, K. L., Taylor, P. P., Sicheri, F., Pawson, T. & Holland, S. J. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol. Cell. Biol.20, 4791–4805 (2000). ArticleCASPubMedPubMed Central Google Scholar
Irusta, P. M. & DiMaio, D. A single amino acid substitution in a WW-like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation. EMBO J.17, 6912–6923 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science279, 577–580 (1998). ArticleADSCASPubMed Google Scholar
Meshinchi, S. et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood97, 89–94 (2001). ArticleCASPubMed Google Scholar
Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene19, 6102–6114 (2000). ArticleCASPubMed Google Scholar
Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science267, 381–383 (1995). ArticleADSCASPubMed Google Scholar
Zhou, S. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature373, 536–539 (1995). Article Google Scholar
Bocciardi, R. et al. The multiple endocrine neoplasia type 2B point mutation switches the specificity of the Ret tyrosine kinase towards cellular substrates that are susceptible to interact with Crk and Nck. Oncogene15, 2257–2265 (1997). ArticleCASPubMed Google Scholar
Murakami, H. et al. Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by ret with the MEN 2B mutation. Biochem. Biophys. Res. Commun.262, 68–75 (1999). ArticleCASPubMed Google Scholar
Smith-Hicks, C. L., Sizer, K. C., Powers, J. F., Tischler, A. S. & Costantini, F. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J.19, 612–622 (2000). ArticleCASPubMedPubMed Central Google Scholar
van Weering, D. H. & Bos, J. L. Signal transduction by the receptor tyrosine kinase Ret. Recent Results Cancer Res.154, 271–281 (1998). ArticleCASPubMed Google Scholar
Ashman, L. K. The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell Biol.31, 1037–1051 (1999). ArticleCASPubMed Google Scholar
Besmer, P. The kit ligand encoded at the murine Steel locus: a pleiotropic growth and differentiation factor. Curr. Opin. Cell Biol.3, 939–946 (1991). ArticleCASPubMed Google Scholar
Blume-Jensen, P. & Hunter, T. in Cancer Research - An Encyclopedic Reference (ed. Schwab, M.) (Springer, in the press).
Kozlowski, M. et al. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol. Cell. Biol.18, 2089–2099 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lennartsson, J. et al. Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene18, 5546–5553 (1999). ArticleCASPubMed Google Scholar
Taniguchi, M. et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res.59, 4297–4300 (1999). CASPubMed Google Scholar
Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet.16, 68–73 (1997). ArticleCASPubMed Google Scholar
Chian, R. et al. PI3 kinase mediates transformation of hematopoietic cells by the V816 c-kit mutant. Exp. Hematol.28, 1491 (2000). Article Google Scholar
Blume-Jensen, P., Janknecht, R. & Hunter, T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr. Biol.8, 779–782 (1998). ArticleCASPubMed Google Scholar
Chen, H. E., Chang, S., Trub, T. & Neel, B. G. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol.16, 3685–3697 (1996). ArticleCASPubMedPubMed Central Google Scholar
Paulson, R. F., Vesely, S., Siminovitch, K. A. & Bernstein, A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nature Genet.13, 309–315 (1996). ArticleCASPubMed Google Scholar
Piao, X., Paulson, R., van der Geer, P., Pawson, T. & Bernstein, A. Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1. Proc. Natl Acad. Sci. USA93, 14665–14669 (1996). ArticleADSCASPubMedPubMed Central Google Scholar
Beghini, A. et al. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum. Mol. Genet.9, 2297–2304 (2000). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med.2, 561–566 (1996). ArticleCASPubMed Google Scholar
Heinrich, M. C. et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood96, 925–932 (2000). ArticleCASPubMed Google Scholar
Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature260, 170–173 (1976). ArticleADSCASPubMed Google Scholar
Bjorge, J. D., Jakymiw, A. & Fujita, D. J. Selected glimpses into the activation and function of src kinase. Oncogene19, 5620–5635 (2000). ArticleCASPubMed Google Scholar
Sicheri, F. & Kuriyan, J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol.7, 777–785 (1997). ArticleCASPubMed Google Scholar
Irby, R. B. et al. Activating SRC mutation in a subset of advanced human colon cancers. Nature Genet.21, 187–190 (1999). ArticleCASPubMed Google Scholar
Nowell, P. & Hungerford, D. A minute chromosome in human chronic granulocytic leukemia. Science132, 1497 (1960). Google Scholar
Vigneri, P. & Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nature Med.7, 228–234 (2001). ArticleCASPubMed Google Scholar
Wang, J. Y. Regulation of cell death by the abl tyrosine kinase. Oncogene19, 5643–5650 (2000). ArticleCASPubMed Google Scholar
Stiewe, T. & Putzer, B. M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet.26, 464–469 (2000). ArticleCASPubMed Google Scholar
Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A. & Pendergast, A. M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev.13, 2400–2411 (1999). ArticleCASPubMedPubMed Central Google Scholar
McWhirter, J. R., Galasso, D. L. & Wang, J. Y. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol. Cell. Biol.13, 7587–7595 (1993). CASPubMedPubMed Central Google Scholar
Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood96, 3343–3356 (2000). ArticleCASPubMed Google Scholar
Hallek, M. et al. Interaction of the receptor tyrosine kinase p145c-kit with the p210bcr/abl kinase in myeloid cells. Br. J. Haematol.94, 5–16 (1996). ArticleCASPubMed Google Scholar
Gesbert, F., Sellers, W. R., Signoretti, S., Loda, M. & Griffin, J. D. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J. Biol. Chem.275, 39223–39230 (2000). ArticleCASPubMed Google Scholar
Skorski, T. et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J.16, 6151–6161 (1997). ArticleCASPubMedPubMed Central Google Scholar
Horita, M. et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J. Exp. Med.191, 977–984 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ihle, J. N., Nosaka, T., Thierfelder, W., Quelle, F. W. & Shimoda, K. Jaks and Stats in cytokine signaling. Stem Cells15(Suppl. 1), 105–111; discussion, 112 (1997). ArticleCASPubMed Google Scholar
Bromberg, J. F. Activation of STAT proteins and growth control. BioEssays23, 161–169 (2001). ArticleCASPubMed Google Scholar
Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene19, 2474–2488 (2000). ArticleCASPubMed Google Scholar
Haspel, R. L. & Darnell, J. E. A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc. Natl Acad. Sci. USA96, 10188–10193 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Yasukawa, H., Sasaki, A. & Yoshimura, A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol.18, 143–164 (2000). ArticleCASPubMed Google Scholar
Peeters, P. et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood90, 2535–2540 (1997). ArticleCASPubMed Google Scholar
Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science278, 1309–1312 (1997). ArticleADSCASPubMed Google Scholar
Schwaller, J. et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell6, 693–704 (2000). ArticleCASPubMed Google Scholar
Rosa Santos, S. C., Dumon, S., Mayeux, P., Gisselbrecht, S. & Gouilleux, F. Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line. Oncogene19, 1164–1172 (2000). ArticleCASPubMed Google Scholar
Migone, T. S. et al. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol. Cell. Biol.18, 6416–6422 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pfeffer, L. M. et al. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science276, 1418–1420 (1997). ArticleCASPubMed Google Scholar
Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J.346(3), 561–576 (2000). Article Google Scholar
Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell103, 253–262 (2000). ArticleCASPubMed Google Scholar
Pyronnet, S. & Sonenberg, N. Cell-cycle-dependent translational control. Curr. Opin. Gen. Dev.11, 13–18 (2001). ArticleCAS Google Scholar
Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res.253, 100–109 (1999). ArticleCASPubMed Google Scholar
Blume-Jensen, P. & Hunter, T. in Encyclopedia of Cancer (ed. Bertino, J. R.) (Academic, San Diego, in the press).
Bellacosa, A. et al. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene8, 745–754 (1993). CASPubMed Google Scholar
Toker, A. & Newton, A. C. Cellular signaling: pivoting around PDK-1. Cell103, 185–188 (2000). ArticleCASPubMed Google Scholar
Meier, R. & Hemmings, B. A. Regulation of protein kinase B. J. Recept. Signal. Transduct. Res.19, 121–128 (1999). ArticleCASPubMed Google Scholar
Williams, M. R. et al. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol.10, 439–448 (2000). ArticleCASPubMed Google Scholar
Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev.13, 2905–2927 (1999). ArticleCASPubMed Google Scholar
Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.12, 3499–3511 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol.3, 245–252 (2001). ArticleCASPubMed Google Scholar
Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science276, 1848–1850 (1997). ArticleCASPubMed Google Scholar
Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet.21, 99–102 (1999). ArticleCASPubMed Google Scholar
Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J.17, 743–753 (1998). ArticleCASPubMedPubMed Central Google Scholar
Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet.27, 222–224 (2001). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ. Nature406, 897–902 (2000). ArticleADSCASPubMed Google Scholar
Brennan, P., Babbage, J. W., Thomas, G. & Cantrell, D. p70(s6k) integrates phosphatidylinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol. Cell. Biol.19, 4729–4738 (1999). ArticleCASPubMedPubMed Central Google Scholar
Feng, L. X., Ravindranath, N. & Dym, M. Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J. Biol. Chem.275, 25572–25576 (2000). ArticleCASPubMed Google Scholar
Masahiro, A., Blazek, E. & Vogt, P. K. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl Acad. Sci. USA98, 136–141 (2001). ArticleADS Google Scholar
Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell104, 593–604 (2001). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-Abl tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Activity of a specific inhibitor of the BCR-Abl tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001). ArticleCASPubMed Google Scholar
Joensuu, H. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med.344, 1052–1056 (2001). ArticleCASPubMed Google Scholar