Molecular mechanism of cAMP modulation of HCN pacemaker channels (original) (raw)
References
Santoro, B. et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell93, 717–729 (1998). ArticleCAS Google Scholar
Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature393, 587–591 (1998). ArticleADSCAS Google Scholar
Gauss, R., Seifert, R. & Kaupp, U. B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature393, 583–587 (1998). ArticleADSCAS Google Scholar
Ishii, T. M., Takano, M., Xie, L. H., Noma, A. & Ohmori, H. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J. Biol. Chem.274, 12835–12839 (1999). ArticleCAS Google Scholar
Santoro, B. & Tibbs, G. R. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann. N. Y. Acad. Sci.868, 741–764 (1999). ArticleADSCAS Google Scholar
Kaupp, U. & Seifert, R. Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol.63, 235–257 (2001). ArticleCAS Google Scholar
DiFrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol.55, 455–472 (1993). ArticleCAS Google Scholar
Pape, H. C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol.58, 299–327 (1996). ArticleCAS Google Scholar
Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci.19, 235–263 (1996). ArticleCAS Google Scholar
Cui, J., Melman, Y., Palma, E., Fishman, G. I. & McDonald, T. V. Cyclic AMP regulates the HERG K+ channel by dual pathways. Curr. Biol.10, 671–674 (2000). ArticleCAS Google Scholar
DiFrancesco, D. & Tortora, P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature351, 145–147 (1991). ArticleADSCAS Google Scholar
Santoro, B. et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J. Neurosci.20, 5264–5275 (2000). ArticleCAS Google Scholar
Weber, I. T. & Steitz, T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. Mol. Biol.198, 311–326 (1987). ArticleCAS Google Scholar
Goulding, E. H., Tibbs, G. R. & Siegelbaum, S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature372, 369–374 (1994). ArticleADSCAS Google Scholar
Varnum, M. D., Black, K. D. & Zagotta, W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron15, 619–625 (1995). ArticleCAS Google Scholar
Tibbs, G. R., Liu, D. T., Leypold, B. G. & Siegelbaum, S. A. A state-independent interaction between ligand and a conserved arginine residue in cyclic nucleotide-gated channels reveals a functional polarity of the cyclic nucleotide binding site. J. Biol. Chem.273, 4497–4505 (1998). ArticleCAS Google Scholar
Barbuti, A., Baruscotti, M., Altomare, C., Moroni, A. & DiFrancesco, D. Action of internal pronase on the f-channel kinetics in the rabbit SA node. J. Physiol.520, 737–744 (1999). ArticleCAS Google Scholar
Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron14, 857–864 (1995). ArticleCAS Google Scholar
Zong, X., Zucker, H., Hofmann, F. & Biel, M. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J.17, 353–362 (1998). ArticleCAS Google Scholar
Paoletti, P., Young, E. C. & Siegelbaum, S. A. C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J. Gen. Physiol.113, 17–34 (1999). ArticleCAS Google Scholar
Chen, J., Mitcheson, J. S., Lin, M. & Sanguinetti, M. C. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J. Biol. Chem.275, 36465–36471 (2000). ArticleCAS Google Scholar
Chen, S., Wang, J. & Siegelbaum, S. A. Domains important for gating and cAMP regulation of HCN channels. Soc. Neurosci. Abstr.26, 2139 (2000). Google Scholar
Shin, K., Rothberg, B. & Yellen, G. Blocker state dependence and trapping in hyperpolarization-activated cation channels. Evidence for an intracellular activation gate. J. Gen. Physiol.117, 91–102 (2000). Article Google Scholar
del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature403, 321–325 (2000). ArticleADSCAS Google Scholar
Gulbis, J. M., Zhou, M., Mann, S. & MacKinnon, R. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science289, 123–127 (2000). ArticleADSCAS Google Scholar
Cushman, S. J. et al. Voltage dependent activation of potassium channels is coupled to T1 domain. Nature Struct. Biol.7, 403–407 (2000). ArticleCAS Google Scholar
Kobertz, W. R., Williams, C. & Miller, C. Hanging gondola structure of the T1 domain in a voltage-gated K+ channel. Biochemistry39, 10347–10352 (2000). ArticleCAS Google Scholar
Liman, E. R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron9, 861–871 (1992). ArticleCAS Google Scholar