Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition (original) (raw)
References
McMahon, S. B. & Bennett, D. L. H. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 105–128 (Harcourt, London, 1999). Google Scholar
Bevan, S. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 85–103 (Harcourt, London, 1999). Google Scholar
Ganju, P., O'Bryan, J. P., Der, C., Winter, J. & James, I. F. Differential regulation of SHC proteins by nerve growth factor in sensory neurons and PC12 cells. Eur. J. Neurosci.10, 1995–2008 (1998). ArticleCAS Google Scholar
Burgess, G. M., Mullaney, I., McNeill, M., Dunn, P. M. & Rang, H. P. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci.9, 3314–3325 (1989). ArticleCAS Google Scholar
Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science288, 1765–1769 (2000). ArticleADSCAS Google Scholar
Shu, X. Q. & Mendell, L. M. Neurotrophins and hyperalgesia. Proc. Natl Acad. Sci. USA96, 7693–7696 (1999). ArticleADSCAS Google Scholar
Nicholas, R. S., Winter, J., Wren, P., Bergmann, R. & Woolf, C. J. Peripheral inflammation increases the capsaicin sensitivity of dorsal root ganglion neurons in a nerve growth factor-dependent manner. Neuroscience91, 1425–1433 (1999). ArticleCAS Google Scholar
Koltzenburg, M., Bennett, D. L., Shelton, D. L. & McMahon, S. B. Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur. J. Neurosci.11, 1698–1704 (1999). ArticleCAS Google Scholar
Woolf, C. J. Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Phil. Trans. R. Soc. Lond. B351, 441–448 (1996). ArticleADSCAS Google Scholar
Koltzenburg, M. The changing sensitivity in the life of the nociceptor. Pain6 (Suppl.), S93–S102 (1999). Article Google Scholar
Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997). ArticleADSCAS Google Scholar
Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron21, 531–543 (1998). ArticleCAS Google Scholar
Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science288, 306–313 (2000). ArticleADSCAS Google Scholar
Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature405, 183–187 (2000). ArticleADSCAS Google Scholar
Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA97, 8134–8139 (2000). ArticleADSCAS Google Scholar
Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci.23, 159–166 (2000). ArticleCAS Google Scholar
Shu, X. & Mendell, L. M. Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci. Lett.274, 159–162 (1999). ArticleCAS Google Scholar
Bergmann, I., Reiter, R., Toyka, K. V. & Koltzenburg, M. Nerve growth factor evokes hyperalgesia in mice lacking the low-affinity neurotrophin receptor p75. Neurosci. Lett.255, 87–90 (1998). ArticleCAS Google Scholar
Stephens, R. M. et al. Trk receptors use redundant signal transduction pathways involving SHC and PLC-γ1 to mediate NGF responses. Neuron12, 691–705 (1994). ArticleCAS Google Scholar
Cesare, P., Dekker, L. V., Sardini, A., Parker, P. J. & McNaughton, P. A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron23, 617–624 (1999). ArticleCAS Google Scholar
Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature408, 985–990 (2000). ArticleADSCAS Google Scholar
Womack, K. B. et al. Do phosphatidylinositides modulate vertebrate phototransduction? J. Neurosci.20, 2792–2799 (2000). ArticleCAS Google Scholar
Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature391, 803–806 (1998). ArticleADSCAS Google Scholar
Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biol.1, 183–188 (1999). ArticleCAS Google Scholar
Li, H. S., Xu, X. Z. & Montell, C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron24, 261–273 (1999). ArticleCAS Google Scholar
Estacion, M., Sinkins, W. G. & Schilling, W. P. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol.530, 1–19 (2001). ArticleCAS Google Scholar
Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature400, 452–457 (1999). ArticleADSCAS Google Scholar
Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature397, 259–263 (1999). ArticleADSCAS Google Scholar
Chevesich, J., Kreuz, A. J. & Montell, C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron18, 95–105 (1997). ArticleCAS Google Scholar
Scott, K. & Zuker, C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature395, 805–808 (1998). ArticleADSCAS Google Scholar