Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles (original) (raw)
References
McKim, K. S. & Hawley, R. S. Chromosomal control of meiotic cell division. Science270, 1595–1601 (1995). ArticleCAS Google Scholar
Waters, J. C. & Salmon, E. D. Pathways of spindle assembly. Curr. Opin. Cell Biol.9, 37–43 (1997). ArticleCAS Google Scholar
Glover, D. M., Gonzalez, C. & Raff, J. W. The centrosome. Scient. Am.268, 62–68 (1993). ArticleCAS Google Scholar
Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature382, 420–425 (1996). ArticleCAS Google Scholar
Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol.8, 903–913 (1998). ArticleCAS Google Scholar
Sawin, K. E. & Mitchison, T. J. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol.112, 925–40 (1991). ArticleCAS Google Scholar
Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol.134, 455–464 (1996). ArticleCAS Google Scholar
Mahowald, A. P. & Kambysellis, M. P. Oogenesis. in The Genetics and Biology of Drosophila. Vol2d. (eds Ashburner, M. & Wright, T. R. F.) 141–224 (Academic Press, New York, 1980). Google Scholar
Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature345, 81–83 (1990). ArticleCAS Google Scholar
McDonald, H. B. & Goldstein, L. S. B. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell61, 991–1000 (1990). ArticleCAS Google Scholar
McDonald, H. B., Stewart, R. J. & Goldstein, L. S. B. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell63, 1159–1165 (1990). ArticleCAS Google Scholar
Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature347, 780–782 (1990). ArticleCAS Google Scholar
Hatsumi, M. & Endow, S. A. The Drosophila ncd microtubule motor protein is spindle-associated in meiotic and mitotic cells. J. Cell Sci.103, 1013–1020 (1992). CASPubMed Google Scholar
Hatsumi, M. & Endow, S. A. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci.101, 547–559 (1992). PubMed Google Scholar
Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem.268, 9005–9013 (1993). CASPubMed Google Scholar
Theurkauf, W. E. & Hawley, R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol.116, 1167–1180 (1992). ArticleCAS Google Scholar
Tavosanis, G., Llamazares, S., Goulielmos, G. & Gonzalez, C. Essential role for γ-tubulin in the acentriolar female meiotic spindle of Drosophila. EMBO J.16, 1809–1819 (1997). ArticleCAS Google Scholar
Wilson, P. G. & Borisy, G. G. Maternally expressed γTub37CD in Drosophila is differentially required for female meiosis and embryonic mitosis. Dev. Biol.199, 273–290 (1998). ArticleCAS Google Scholar
Cullen, C. F., Deák, P., Glover, D. M. & Ohkura, H. mini spindles: a gene encoding a conserved microtubule associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol.146, 1005–1018 (1999). ArticleCAS Google Scholar
Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G. & Raff, J. D-TACC: a novel centrosomal protein required for normal spindle function in early Drosophila embryo. EMBO J.19, 241–252 (2000). ArticleCAS Google Scholar
Whitfield, W. G., Millar, S. E., Saumweber, H., Frasch, M. & Glover, D. M. Cloning of a gene encoding an antigen associated with the centrosome in Drosophila. J. Cell Sci.89, 467–480 (1988). CASPubMed Google Scholar
Komma, D. J., Horne, A. S. & Endow, S. A. Separation of meiotic and mitotic effects of claret non-disjunctional on chromosome segregation in Drosophila. EMBO J.10, 419–424 (1991). ArticleCAS Google Scholar
Moore, J. D., Song, H. & Endow, S. A. A point mutation in the microtubule binding region of the Ncd motor protein reduces motor velocity. EMBO J.15, 3306–3314 (1996). ArticleCAS Google Scholar
Nabeshima, K., Kurooka, H., Takeuchi, M., Kinoshita, K., Nakaseko, Y. & Yanagida, M. p93Dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev.9, 1572–1585 (1995). ArticleCAS Google Scholar
Wang, P. J. & Huffaker T. C. Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol.139, 1271–1280 (1997). ArticleCAS Google Scholar
Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol.141, 1159–1168 (1998). ArticleCAS Google Scholar
Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci.111, 1371–1383 (1998). CASPubMed Google Scholar
Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol.2, 13–19 (2000). ArticleCAS Google Scholar
Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem.275, 20748–20753 (2000). ArticleCAS Google Scholar
Lee, M. J., Gergely, F., Jeffers, K., Peak-Chew, S. Y. & Raff, J. W. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature Cell Biol.3, 643–649 (2001). ArticleCAS Google Scholar
Vasquez, R. J., Gard, D. L., & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol.127, 985–993 (1994). ArticleCAS Google Scholar
Ashburner, M. Drosophila (Cold Spring Harbor Laboratory Press, New York, 1989). Google Scholar
Lindsley, D. L. & Zimm, G. G. The genome of Drosophila melanogaster (Academic Press, New York, 1992). Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory manual (Cold Spring Harbor Press, New York, 1989). Google Scholar
Harlow, E. & Lane, D. Antibodies: a laboratory manual (Cold Spring Harbor Laboratory, New York, 1988). Google Scholar
Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci.93, 491–500 (1989). PubMed Google Scholar