Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles (original) (raw)

References

  1. McKim, K. S. & Hawley, R. S. Chromosomal control of meiotic cell division. Science 270, 1595–1601 (1995).
    Article CAS Google Scholar
  2. Waters, J. C. & Salmon, E. D. Pathways of spindle assembly. Curr. Opin. Cell Biol. 9, 37–43 (1997).
    Article CAS Google Scholar
  3. Glover, D. M., Gonzalez, C. & Raff, J. W. The centrosome. Scient. Am. 268, 62–68 (1993).
    Article CAS Google Scholar
  4. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).
    Article CAS Google Scholar
  5. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).
    Article CAS Google Scholar
  6. Sawin, K. E. & Mitchison, T. J. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–40 (1991).
    Article CAS Google Scholar
  7. Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134, 455–464 (1996).
    Article CAS Google Scholar
  8. Mahowald, A. P. & Kambysellis, M. P. Oogenesis. in The Genetics and Biology of Drosophila. Vol 2d. (eds Ashburner, M. & Wright, T. R. F.) 141–224 (Academic Press, New York, 1980).
    Google Scholar
  9. Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345, 81–83 (1990).
    Article CAS Google Scholar
  10. McDonald, H. B. & Goldstein, L. S. B. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61, 991–1000 (1990).
    Article CAS Google Scholar
  11. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. B. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).
    Article CAS Google Scholar
  12. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).
    Article CAS Google Scholar
  13. Hatsumi, M. & Endow, S. A. The Drosophila ncd microtubule motor protein is spindle-associated in meiotic and mitotic cells. J. Cell Sci. 103, 1013–1020 (1992).
    CAS PubMed Google Scholar
  14. Hatsumi, M. & Endow, S. A. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101, 547–559 (1992).
    PubMed Google Scholar
  15. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 (1993).
    CAS PubMed Google Scholar
  16. Theurkauf, W. E. & Hawley, R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 (1992).
    Article CAS Google Scholar
  17. Tavosanis, G., Llamazares, S., Goulielmos, G. & Gonzalez, C. Essential role for γ-tubulin in the acentriolar female meiotic spindle of Drosophila. EMBO J. 16, 1809–1819 (1997).
    Article CAS Google Scholar
  18. Wilson, P. G. & Borisy, G. G. Maternally expressed γTub37CD in Drosophila is differentially required for female meiosis and embryonic mitosis. Dev. Biol. 199, 273–290 (1998).
    Article CAS Google Scholar
  19. Cullen, C. F., Deák, P., Glover, D. M. & Ohkura, H. mini spindles: a gene encoding a conserved microtubule associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).
    Article CAS Google Scholar
  20. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G. & Raff, J. D-TACC: a novel centrosomal protein required for normal spindle function in early Drosophila embryo. EMBO J. 19, 241–252 (2000).
    Article CAS Google Scholar
  21. Whitfield, W. G., Millar, S. E., Saumweber, H., Frasch, M. & Glover, D. M. Cloning of a gene encoding an antigen associated with the centrosome in Drosophila. J. Cell Sci. 89, 467–480 (1988).
    CAS PubMed Google Scholar
  22. Komma, D. J., Horne, A. S. & Endow, S. A. Separation of meiotic and mitotic effects of claret non-disjunctional on chromosome segregation in Drosophila. EMBO J. 10, 419–424 (1991).
    Article CAS Google Scholar
  23. Moore, J. D., Song, H. & Endow, S. A. A point mutation in the microtubule binding region of the Ncd motor protein reduces motor velocity. EMBO J. 15, 3306–3314 (1996).
    Article CAS Google Scholar
  24. Nabeshima, K., Kurooka, H., Takeuchi, M., Kinoshita, K., Nakaseko, Y. & Yanagida, M. p93Dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9, 1572–1585 (1995).
    Article CAS Google Scholar
  25. Wang, P. J. & Huffaker T. C. Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).
    Article CAS Google Scholar
  26. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).
    Article CAS Google Scholar
  27. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371–1383 (1998).
    CAS PubMed Google Scholar
  28. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).
    Article CAS Google Scholar
  29. Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748–20753 (2000).
    Article CAS Google Scholar
  30. Lee, M. J., Gergely, F., Jeffers, K., Peak-Chew, S. Y. & Raff, J. W. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature Cell Biol. 3, 643–649 (2001).
    Article CAS Google Scholar
  31. Vasquez, R. J., Gard, D. L., & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994).
    Article CAS Google Scholar
  32. Ashburner, M. Drosophila (Cold Spring Harbor Laboratory Press, New York, 1989).
    Google Scholar
  33. Lindsley, D. L. & Zimm, G. G. The genome of Drosophila melanogaster (Academic Press, New York, 1992).
    Google Scholar
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory manual (Cold Spring Harbor Press, New York, 1989).
    Google Scholar
  35. Harlow, E. & Lane, D. Antibodies: a laboratory manual (Cold Spring Harbor Laboratory, New York, 1988).
    Google Scholar
  36. Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989).
    PubMed Google Scholar

Download references