mDia mediates Rho-regulated formation and orientation of stable microtubules (original) (raw)
References
Vasiliev, J. M. & Gelfand, I. M. Effects of colcemid on morphogenetic processes and locomotion in fibroblasts. Cold Spring Harbor Conf. Cell Proliferation3, 279–304 (1976). Google Scholar
Gundersen, G. G. & Cook, T. A. Microtubules and signal transduction. Curr. Opin. Cell Biol.11, 81–94 (1999). ArticleCAS Google Scholar
Cole, N. B. & Lippincott-Schwartz, J. Organization of organelles and membrane traffic by microtubules. Curr. Opin. Cell Biol.7, 55–64 (1995). ArticleCAS Google Scholar
Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol.99, 2175–2186 (1984). ArticleCAS Google Scholar
Schulze, E. & Kirschner, M. Microtubule dynamics in interphase cells. J. Cell Biol.102, 1020–1031 (1986). ArticleCAS Google Scholar
Webster, D. R., Gundersen, G. G., Bulinski, J. C. & Borisy, G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl Acad. Sci. USA84, 9040–9044 (1987). ArticleCAS Google Scholar
Bulinski, J. C. & Gundersen, G. G. Stabilization and post-translational modification of microtubules during cellular morphogenesis. Bioessays13, 285–293 (1991). ArticleCAS Google Scholar
Idriss, H. Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil. Cytoskeleton45, 173–184 (2000). ArticleCAS Google Scholar
Gundersen, G. G., Kalnoski, M. H. & Bulinski, J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated α-tubulin are distributed differently in vivo. Cell38, 779–789 (1984). ArticleCAS Google Scholar
Gurland, G. & Gundersen, G. G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol.131, 1275–1290 (1995). ArticleCAS Google Scholar
Kreitzer, G., Liao, G. & Gundersen, G. G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell10, 1105–1118 (1999). ArticleCAS Google Scholar
Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem.273, 9797–9803 (1998). ArticleCAS Google Scholar
Larcher, J. C., Boucher, D., Lazereg, S., Gros, F. & Denoulet, P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a Tau-independent binding site. J. Biol. Chem.271, 22117–22124 (1996). ArticleCAS Google Scholar
Khawaja, S., Gundersen, G. G. & Bulinski, J. C. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol.106, 141–149 (1988). ArticleCAS Google Scholar
Webster, D. R., Wehland, J., Weber, K. & Borisy, G. G. Detyrosination of α-tubulin does not stabilize microtubules in vivo. J. Cell Biol.111, 113–122 (1990); erratum: J. Cell Biol.111, 1325–1326 (1990). ArticleCAS Google Scholar
Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol.141, 175–185 (1998). ArticleCAS Google Scholar
Gundersen, G. G., Kim, I. & Chapin, C. J. Induction of stable microtubules in 3T3 fibroblasts by TGF-β and serum. J. Cell Sci.107, 645–659 (1994). CAS Google Scholar
Nagasaki, T. & Gundersen, G. G. Depletion of lysophosphatidic acid triggers a loss of oriented detyrosinated microtubules in motile fibroblasts. J. Cell Sci.109, 2461–2469 (1996). CAS Google Scholar
Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem.271, 3756–3762 (1996). ArticleCAS Google Scholar
Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. Embo J.16, 3044–3056 (1997). ArticleCAS Google Scholar
Alberts, A. S., Bouquin, N., Johnston, L. H. & Treisman, R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G-protein β-subunits and the yeast response regulator protein Skn7. J. Biol. Chem.273, 8616–8622 (1998). ArticleCAS Google Scholar
Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development120, 3367–3377 (1994). CAS Google Scholar
Harris, S. D., Hamer, L., Sharpless, K. E. & Hamer, J. E. The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. Embo J.16, 3474–3483 (1997). ArticleCAS Google Scholar
Zahner, J. E., Harkins, H. A. & Pringle, J. R. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell Biol.16, 1857–1870 (1996). ArticleCAS Google Scholar
Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol.144, 947–961 (1999). ArticleCAS Google Scholar
Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol.149, 863–874 (2000). ArticleCAS Google Scholar
Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol.3, 8–14 (2001). ArticleCAS Google Scholar
Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell5, 13–25 (2000). ArticleCAS Google Scholar
Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet.62, 533–541 (1998). ArticleCAS Google Scholar
Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science278, 1315–1318 (1997). ArticleCAS Google Scholar
Sahai, E., Alberts, A. S. & Treisman, R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. Embo J.17, 1350–1361 (1998). ArticleCAS Google Scholar
Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol.8, 111–115 (1998). ArticleCAS Google Scholar
Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol.1, 136–143 (1999). ArticleCAS Google Scholar
Nakano, K. et al. Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol. Biol. Cell10, 2481–2491 (1999). ArticleCAS Google Scholar
Tominaga, T., Ishizaki, T., Narumiya, S. & Barber, D. L. p160ROCK mediates RhoA activation of Na-H exchange. Embo J.17, 4712–4722 (1998). ArticleCAS Google Scholar
Alberts, A. S. Identification of a carboxy-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. (2001).
Gotlieb, A. I., May, L. M., Subrahmanyan, L. & Kalnins, V. I. Distribution of microtubule organizing centres in migrating sheets of endothelial cells. J. Cell Biol.91, 589–594 (1981). ArticleCAS Google Scholar
Gundersen, G. G. & Bulinski, J. C. Selective stabilization of microtubules oriented towards the direction of cell migration. Proc. Natl Acad. Sci. USA85, 5946–5950 (1988). ArticleCAS Google Scholar
Infante, A. S., Stein, M., Zhai, Y., Borisy, G. & Gundersen, G. G. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci.113, 3907–3919 (2000). CAS Google Scholar
Leung, T., Manser, E., Tan, L. & Lim, L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem.270, 29051–29054 (1995). ArticleCAS Google Scholar
Leung, T., Chen, X. Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROK-α is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell Biol.16, 5313–5327 (1996). ArticleCAS Google Scholar
Ishizaki, T. et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett.404, 118–124 (1997). ArticleCAS Google Scholar
Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature389, 990–994 (1997). ArticleCAS Google Scholar
Chang, F. Movement of a cytokinesis factor cdc12p to the site of cell division. Curr. Biol.12, 849–852 (1999). Article Google Scholar
Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science287, 2260–2262 (2000). ArticleCAS Google Scholar
Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol.10, 865–868 (2000). ArticleCAS Google Scholar
Sin, W. C., Chen, X. Q., Leung, T. & Lim, L. RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol. Cell Biol.18, 6325–6339 (1998). ArticleCAS Google Scholar
Mikhailov, A. V. & Gundersen, G. G. Centripetal transport of microtubules in motile cells. Cell Motil. Cytoskeleton32, 173–186 (1995). ArticleCAS Google Scholar
Kilmartin, J. V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol.93, 576–582 (1982). ArticleCAS Google Scholar
Lessard, J. L. Two monoclonal antibodies to actin: one muscle selective and one generally reactive. Cell Motil. Cytoskeleton10, 349–362 (1988). ArticleCAS Google Scholar