mDia mediates Rho-regulated formation and orientation of stable microtubules (original) (raw)

References

  1. Vasiliev, J. M. & Gelfand, I. M. Effects of colcemid on morphogenetic processes and locomotion in fibroblasts. Cold Spring Harbor Conf. Cell Proliferation 3, 279–304 (1976).
    Google Scholar
  2. Gundersen, G. G. & Cook, T. A. Microtubules and signal transduction. Curr. Opin. Cell Biol. 11, 81–94 (1999).
    Article CAS Google Scholar
  3. Cole, N. B. & Lippincott-Schwartz, J. Organization of organelles and membrane traffic by microtubules. Curr. Opin. Cell Biol. 7, 55–64 (1995).
    Article CAS Google Scholar
  4. Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).
    Article CAS Google Scholar
  5. Schulze, E. & Kirschner, M. Microtubule dynamics in interphase cells. J. Cell Biol. 102, 1020–1031 (1986).
    Article CAS Google Scholar
  6. Webster, D. R., Gundersen, G. G., Bulinski, J. C. & Borisy, G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl Acad. Sci. USA 84, 9040–9044 (1987).
    Article CAS Google Scholar
  7. Bulinski, J. C. & Gundersen, G. G. Stabilization and post-translational modification of microtubules during cellular morphogenesis. Bioessays 13, 285–293 (1991).
    Article CAS Google Scholar
  8. Idriss, H. Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil. Cytoskeleton 45, 173–184 (2000).
    Article CAS Google Scholar
  9. Gundersen, G. G., Kalnoski, M. H. & Bulinski, J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated α-tubulin are distributed differently in vivo. Cell 38, 779–789 (1984).
    Article CAS Google Scholar
  10. Gurland, G. & Gundersen, G. G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol. 131, 1275–1290 (1995).
    Article CAS Google Scholar
  11. Kreitzer, G., Liao, G. & Gundersen, G. G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10, 1105–1118 (1999).
    Article CAS Google Scholar
  12. Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998).
    Article CAS Google Scholar
  13. Larcher, J. C., Boucher, D., Lazereg, S., Gros, F. & Denoulet, P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a Tau-independent binding site. J. Biol. Chem. 271, 22117–22124 (1996).
    Article CAS Google Scholar
  14. Khawaja, S., Gundersen, G. G. & Bulinski, J. C. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol. 106, 141–149 (1988).
    Article CAS Google Scholar
  15. Webster, D. R., Wehland, J., Weber, K. & Borisy, G. G. Detyrosination of α-tubulin does not stabilize microtubules in vivo. J. Cell Biol. 111, 113–122 (1990); erratum: J. Cell Biol. 111, 1325–1326 (1990).
    Article CAS Google Scholar
  16. Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998).
    Article CAS Google Scholar
  17. Gundersen, G. G., Kim, I. & Chapin, C. J. Induction of stable microtubules in 3T3 fibroblasts by TGF-β and serum. J. Cell Sci. 107, 645–659 (1994).
    CAS Google Scholar
  18. Nagasaki, T. & Gundersen, G. G. Depletion of lysophosphatidic acid triggers a loss of oriented detyrosinated microtubules in motile fibroblasts. J. Cell Sci. 109, 2461–2469 (1996).
    CAS Google Scholar
  19. Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem. 271, 3756–3762 (1996).
    Article CAS Google Scholar
  20. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. Embo J. 16, 3044–3056 (1997).
    Article CAS Google Scholar
  21. Alberts, A. S., Bouquin, N., Johnston, L. H. & Treisman, R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G-protein β-subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273, 8616–8622 (1998).
    Article CAS Google Scholar
  22. Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 (1994).
    CAS Google Scholar
  23. Harris, S. D., Hamer, L., Sharpless, K. E. & Hamer, J. E. The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. Embo J. 16, 3474–3483 (1997).
    Article CAS Google Scholar
  24. Zahner, J. E., Harkins, H. A. & Pringle, J. R. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 16, 1857–1870 (1996).
    Article CAS Google Scholar
  25. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).
    Article CAS Google Scholar
  26. Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000).
    Article CAS Google Scholar
  27. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol. 3, 8–14 (2001).
    Article CAS Google Scholar
  28. Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).
    Article CAS Google Scholar
  29. Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998).
    Article CAS Google Scholar
  30. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).
    Article CAS Google Scholar
  31. Sahai, E., Alberts, A. S. & Treisman, R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. Embo J. 17, 1350–1361 (1998).
    Article CAS Google Scholar
  32. Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111–115 (1998).
    Article CAS Google Scholar
  33. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).
    Article CAS Google Scholar
  34. Nakano, K. et al. Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 2481–2491 (1999).
    Article CAS Google Scholar
  35. Tominaga, T., Ishizaki, T., Narumiya, S. & Barber, D. L. p160ROCK mediates RhoA activation of Na-H exchange. Embo J. 17, 4712–4722 (1998).
    Article CAS Google Scholar
  36. Alberts, A. S. Identification of a carboxy-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. (2001).
  37. Gotlieb, A. I., May, L. M., Subrahmanyan, L. & Kalnins, V. I. Distribution of microtubule organizing centres in migrating sheets of endothelial cells. J. Cell Biol. 91, 589–594 (1981).
    Article CAS Google Scholar
  38. Gundersen, G. G. & Bulinski, J. C. Selective stabilization of microtubules oriented towards the direction of cell migration. Proc. Natl Acad. Sci. USA 85, 5946–5950 (1988).
    Article CAS Google Scholar
  39. Infante, A. S., Stein, M., Zhai, Y., Borisy, G. & Gundersen, G. G. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci. 113, 3907–3919 (2000).
    CAS Google Scholar
  40. Leung, T., Manser, E., Tan, L. & Lim, L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051–29054 (1995).
    Article CAS Google Scholar
  41. Leung, T., Chen, X. Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROK-α is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell Biol. 16, 5313–5327 (1996).
    Article CAS Google Scholar
  42. Ishizaki, T. et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124 (1997).
    Article CAS Google Scholar
  43. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).
    Article CAS Google Scholar
  44. Chang, F. Movement of a cytokinesis factor cdc12p to the site of cell division. Curr. Biol. 12, 849–852 (1999).
    Article Google Scholar
  45. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262 (2000).
    Article CAS Google Scholar
  46. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).
    Article CAS Google Scholar
  47. Sin, W. C., Chen, X. Q., Leung, T. & Lim, L. RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol. Cell Biol. 18, 6325–6339 (1998).
    Article CAS Google Scholar
  48. Mikhailov, A. V. & Gundersen, G. G. Centripetal transport of microtubules in motile cells. Cell Motil. Cytoskeleton 32, 173–186 (1995).
    Article CAS Google Scholar
  49. Kilmartin, J. V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93, 576–582 (1982).
    Article CAS Google Scholar
  50. Lessard, J. L. Two monoclonal antibodies to actin: one muscle selective and one generally reactive. Cell Motil. Cytoskeleton 10, 349–362 (1988).
    Article CAS Google Scholar

Download references