Water conduction through the hydrophobic channel of a carbon nanotube (original) (raw)

References

  1. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R. & Sliwinska-Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999).
    Article ADS CAS Google Scholar
  2. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).
    Article CAS Google Scholar
  3. Wallqvist, A. & Berne, B. J. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99, 2893–2899 (1995).
    Article CAS Google Scholar
  4. Lum, K. & Luzar, A. Pathway to surface-induced phase transition of a confined fluid. Phys. Rev. E 56, R6283–R6286 (1997).
    Article ADS CAS Google Scholar
  5. Bolhuis, P. G. & Chandler, D. Transition path sampling of cavitation between molecular scale solvophobic surfaces. J. Chem. Phys. 113, 8154–8160 (2000).
    Article ADS CAS Google Scholar
  6. Stillinger, F. H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2, 141–158 (1973).
    Article CAS Google Scholar
  7. MacKay, D. H. J. & Wilson, K. R. Possible allosteric significance of water structures in proteins. J. Biomol. Struct. Dyn. 4, 491–500 (1986).
    Article CAS Google Scholar
  8. Lynden-Bell, R. M. & Rasaiah, J. C. Mobility and solvation of ions in channels. J. Chem. Phys. 105, 9266–9280 (1996).
    Article ADS CAS Google Scholar
  9. Sansom, M. S. P., Shrivastava, I. H., Ranatunga, K. M. & Smith, G. R. Simulations of ion channels—watching ions and water move. Trends Biochem. Sci. 25, 368–374 (2000).
    Article CAS Google Scholar
  10. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
    Article ADS CAS Google Scholar
  11. Ajayan, P. M. & Iijima, S. Smallest carbon nanotube. Nature 358, 23 (1992).
    Article ADS Google Scholar
  12. Liu, J. et al. Fullerene pipes. Science 280, 1253–1256 (1998).
    Article ADS CAS Google Scholar
  13. Zahab, A., Spina, L., Poncharal, P. & Marlièe, C. Water-vapor effect on the electrical conductivity of a single walled carbon nanotube mat. Phys. Rev. B 62, 10000–10003 (2000).
    Article ADS CAS Google Scholar
  14. Wilson, M. & Madden, P. A. Growth of ionic crystals in carbon nanotubes. J. Am. Chem. Soc. 123, 2101–2102 (2001).
    Article CAS Google Scholar
  15. Luzar, A. & Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).
    Article ADS CAS Google Scholar
  16. Pomès, R. & Roux, B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys. J. 75, 33–40 (1998).
    Article ADS Google Scholar
  17. Zeidel, M. L., Ambudkar, S. V., Smith, B. L. & Agre, P. Reconstitution of functional water channels in liposomes containing purified red-cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).
    Article CAS Google Scholar
  18. Sakmann, B., Patlak, J. & Neher, E. Single acetylcholine-activated channels show burst kinetics in presence of desensitizing concentrations of agonist. Nature 286, 71–73 (1980).
    Article ADS CAS Google Scholar
  19. Zhong, Q. F., Jiang, Q., Moore, P. B., Newns, D. M. & Klein, M. L. Molecular dynamics simulation of a synthetic ion channel. Biophys. J. 74, 3–10 (1998).
    Article ADS CAS Google Scholar
  20. Walqvist, A., Gallicchio, E. & Levy, R. M. A model for studying drying at hydrophobic interfaces: Structural and thermodynamic properties. J. Phys. Chem. B 105, 6745–6753 (2001).
    Article Google Scholar
  21. Beckstein, O., Biggin, P. C. & Sansom, M. S. P. A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B (in the press).
  22. Wikström, M. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr. Opin. Struct. Biol. 8, 480–488 (1998).
    Article Google Scholar
  23. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
    Article ADS CAS Google Scholar
  24. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Nola, A. D. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
    Article ADS CAS Google Scholar
  25. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
    Article ADS CAS Google Scholar
  26. Cornell, W. D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).
    Article CAS Google Scholar
  27. Bennett, C. H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 22, 245–268 (1976).
    Article ADS MathSciNet Google Scholar
  28. Hummer, G., Garde, S., García, A. E., Pohorille, A. & Pratt, L. R. An information theory model of hydrophobic interactions. Proc. Natl Acad. Sci. USA 93, 8951–8955 (1996).
    Article ADS CAS Google Scholar

Download references