The art and design of genetic screens: zebrafish (original) (raw)
Streisinger, G. et al. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature291, 293–296 (1981).A landmark paper in the zebrafish field reveals that zebrafish are suitable for genetic analysis and screening. ArticleCASPubMed Google Scholar
Solnica-Krezel, L. et al. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics136, 1401–1420 (1994). CASPubMedPubMed Central Google Scholar
Mullins, M. C. et al. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol.4, 189–202 (1994). ArticleCASPubMed Google Scholar
Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development123, 37–46 (1996). CASPubMed Google Scholar
Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development123, 1–36 (1996).Together, references5and6are the first to report large-scale genetic screening in a vertebrate organism. CASPubMed Google Scholar
Kikuchi, Y. et al. casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev.15, 1493–1505 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reiter, J. F. et al. Multiple roles for Gata5 in zebrafish endoderm formation. Development128, 125–135 (2001). CASPubMed Google Scholar
Dickmeis, T. et al. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev.15, 1487–1492 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kikuchi, Y. et al. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev.14, 1279–1289 (2000). CASPubMedPubMed Central Google Scholar
Alexander, J. & Stainier, D. Y. A molecular pathway leading to endoderm formation in zebrafish. Curr. Biol.9, 1147–1157 (1999). ArticleCASPubMed Google Scholar
Stainier, D. Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development123, 285–292 (1996). CASPubMed Google Scholar
Walsh, E. C. & Stainier, D. Y. Udp-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science293, 1670–1673 (2001). ArticleCASPubMed Google Scholar
Ransom, D. G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development123, 311–319 (1996). CASPubMed Google Scholar
Weinstein, B. M. et al. Hematopoietic mutations in the zebrafish. Development123, 303–309 (1996). CASPubMed Google Scholar
Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature403, 776–781 (2000). ArticleCASPubMed Google Scholar
Childs, S. et al. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr. Biol.10, 1001–1004 (2000). ArticleCASPubMed Google Scholar
Wang, H. et al. A zebrafish model for hepatoerythropoietic porphyria. Nature Genet.20, 239–243 (1998). ArticleCASPubMed Google Scholar
Moens, C. B. et al. valentino: a zebrafish gene required for normal hindbrain segmentation. Development122, 3981–3990 (1996). CASPubMed Google Scholar
Moens, C. B. et al. Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development125, 381–391 (1998). CASPubMed Google Scholar
Popperl, H. et al. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol. Cell6, 255–267 (2000). ArticleCASPubMed Google Scholar
Beattie, C. E. et al. Mutations in the stumpy gene reveal intermediate targets for zebrafish motor axons. Development127, 2653–2662 (2000). CASPubMed Google Scholar
Gray, M. et al. Zebrafish deadly seven functions in neurogenesis. Dev. Biol.237, 306–323 (2001). ArticleCASPubMed Google Scholar
Van Eeden, F. J. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development123, 153–164 (1996). CASPubMed Google Scholar
Riley, B. B. & Grunwald, D. J. Efficient induction of point mutations allowing recovery of specific locus mutations in zebrafish. Proc. Natl Acad. Sci. USA92, 5997–6001 (1995). ArticleCASPubMedPubMed Central Google Scholar
Riley, B. B. & Grunwald, D. J. A mutation in zebrafish affecting a localized cellular function required for normal ear development. Dev. Biol.179, 427–435 (1996). ArticleCASPubMed Google Scholar
Alexander, J. et al. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Dev. Genet.22, 288–299 (1998). ArticleCASPubMed Google Scholar
Knapik, E. W. et al. ENU mutagenesis in zebrafish—from genes to complex diseases. Mamm. Genome11, 511–519 (2000). ArticleCASPubMed Google Scholar
Chakrabarti, S. et al. Frequency of γ-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics103, 109–123 (1983). CASPubMedPubMed Central Google Scholar
Walker, C. & Streisinger, G. Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics103, 125–136 (1983). CASPubMedPubMed Central Google Scholar
Ando, H. et al. Efficient mutagenesis of zebrafish by a DNA cross-linking agent. Neurosci. Lett.244, 81–84 (1998). ArticleCASPubMed Google Scholar
Talbot, W. S. & Schier, A. F. Positional cloning of mutated zebrafish genes. Methods Cell Biol.60, 259–286 (1999). ArticleCASPubMed Google Scholar
Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev.13, 2713–2724 (1999).Describes the first large-scale screen in zebrafish using insertional mutagenesis — a method designed to facilitate rapid gene cloning. ArticleCASPubMedPubMed Central Google Scholar
Kawakami, K. et al. Proviral insertions in the zebrafish hagoromo gene, encoding an F-box/WD40-repeat protein, cause stripe pattern anomalies. Curr. Biol.10, 463–466 (2000). ArticleCASPubMed Google Scholar
Chen, W. et al. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development128, 2385–2396 (2001). CASPubMed Google Scholar
Farber, S. A. et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science292, 1385–1388 (2001).Zebrafish mutants with non-morphological defects of the digestive tract are identified using a fluorescent reporter to visualize enzymatic activity in live embryos. ArticleCASPubMed Google Scholar
Karlstrom, R. O. et al. Zebrafish mutations affecting retinotectal axon pathfinding. Development123, 427–438 (1996). CASPubMed Google Scholar
Baier, H. et al. Genetic dissection of the retinotectal projection. Development123, 415–425 (1996). CASPubMed Google Scholar
Fricke, C. et al. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science292, 507–510 (2001). ArticleCASPubMed Google Scholar
Neuhauss, S. C. et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci.19, 8603–8615 (1999). ArticleCASPubMedPubMed Central Google Scholar
Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development124, 4105–4111 (1997). CASPubMed Google Scholar
Ju, B. et al. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Genet.25, 158–167 (1999). ArticleCASPubMed Google Scholar
Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development123, 399–413 (1996). CASPubMed Google Scholar
Lorent, K. et al. The zebrafish space cadet gene controls axonal pathfinding of neurons that modulate fast turning movements. Development128, 2131–2142 (2001). CASPubMed Google Scholar
Baier, H. Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr. Opin. Neurobiol.10, 451–455 (2000).A useful review of the zebrafish behavioural genetic screens that uncovered mutants with visual system defects (references49–51). ArticleCASPubMed Google Scholar
Brockerhoff, S. E. et al. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl Acad. Sci. USA92, 10545–10549 (1995). ArticleCASPubMedPubMed Central Google Scholar
Li, L. & Dowling, J. E. Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. J. Neurosci.20, 1883–1892 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gerlai, R. et al. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav.67, 773–782 (2000). ArticleCASPubMed Google Scholar
Darland, T. et al. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl Acad. Sci. USA98, 11691–11696 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sheehan, J. et al. Demonstration of the extrinsic coagulation pathway in Teleostei: identification of zebrafish coagulation factor. Proc. Natl Acad. Sci. USA98, 8768–8773 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jagadeeswaran, P. et al. Haemostatic screening and identification of zebrafish mutants with coagulation pathway defects: an approach to identifying novel haemostatic genes in man. Br. J. Haematol.110, 946–956 (2000). ArticleCASPubMed Google Scholar
Link, B. A. et al. The zebrafish young mutation acts non-cell-autonomously to uncouple differentiation from specification for all retinal cells. Development127, 2177–2188 (2000). CASPubMed Google Scholar
Link, B. A. et al. The perplexed and confused mutations affect distinct stages during the transition from proliferating to post-mitotic cells within the zebrafish retina. Dev. Biol.236, 436–453 (2001). ArticleCASPubMed Google Scholar
Herbomel, P. Spinning nuclei in the brain of the zebrafish embryo. Curr. Biol.17, R627–R628 (1999). Article Google Scholar
Feldman, B. et al. Zebrafish organizer development and germ-layer formation require Nodal-related signals. Nature395, 181–185 (1998). ArticleCASPubMed Google Scholar
Van Eeden, F. J. et al. Developmental mutant screens in the zebrafish. Methods Cell Biol.60, 21–41 (1999). ArticleCASPubMed Google Scholar
Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics141, 1583–1595 (1995). CASPubMedPubMed Central Google Scholar
Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet.26, 216–220 (2000).Shows that morpholino technology can be used in zebrafish embryos to effectively knock down specific gene expression, thereby providing a reverse genetic approach to exploring gene function. ArticleCASPubMed Google Scholar
Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet.14, 357–360 (1996). ArticleCASPubMed Google Scholar
Schauerte, H. E. et al. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development125, 2983–2993 (1998). CASPubMed Google Scholar
Ekker, S. C. & Larson, J. D. Morphant technology in model developmental systems Genesis30, 89–93 (2001). ArticleCASPubMed Google Scholar
Liao, E. C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev.12, 621–626 (1998). ArticleCASPubMedPubMed Central Google Scholar
Liao, W. et al. Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development127, 4303–4313 (2000). CASPubMed Google Scholar
Ando, H. et al. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nature Genet.28, 317–325 (2001). ArticleCASPubMed Google Scholar
Scheer, N. et al. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development128, 1099–1107 (2001). CASPubMed Google Scholar
Scheer, N. & Camnos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev.80, 153–158 (1999). ArticleCASPubMed Google Scholar
Halloran, M. C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development127, 1953–1960 (2000). CASPubMed Google Scholar
Raz, E. et al. Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr. Biol.8, 82–88 (1998). ArticleCASPubMed Google Scholar
Peterson, R. T. et al. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA97, 12965–12969 (2000).A screen for small molecules that can modulate embryonic development in a conditional manner reveals the potential of a 'chemical-genetic' approach to studying zebrafish developmental processes. ArticleCASPubMedPubMed Central Google Scholar
Peterson, R. T. et al. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol.11, 1481–1491 (2001). ArticleCASPubMed Google Scholar
Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis. Curr. Biol.11, 1492–1502 (2001). ArticleCASPubMed Google Scholar
Walker, C. et al. Haploid screens and γ-ray mutagenesis. Methods Cell Biol.60, 43–70 (1999). ArticleCASPubMed Google Scholar
Schier, A. F. et al. Mutations affecting the development of the embryonic zebrafish brain. Development123, 165–178 (1996). CASPubMed Google Scholar