T-cell regulation by CD28 and CTLA-4 (original) (raw)
Bretscher, P. & Cohn, M. A theory of self–nonself discrimination. Science169, 1042–1049 (1970). CASPubMed Google Scholar
Lafferty, K. J. & Cunningham, A. J. A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci.53, 27–42 (1975). CASPubMed Google Scholar
Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide–MHC complex on a target cell can elicit a cytolytic T cell response. Immunity4, 565–571 (1996). CASPubMed Google Scholar
Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature375, 148–151 (1995). CASPubMed Google Scholar
Davis, M. M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol.16, 523–544 (1998). CASPubMed Google Scholar
Kersh, G. J., Kersh, E. N., Fremont, D. H. & Allen, P. M. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity9, 817–826 (1998). CASPubMed Google Scholar
Kalergis, A. M. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nature Immunol.2, 229–234 (2001). Mutations in the antigen-binding site of the TCR that significantly decrease or increase the half-life of the association between TCR with MHC–peptide complex were shown to result in impaired T-cell activation, indicating an optimal interaction time. CAS Google Scholar
Lanzavecchia, A. & Sallusto, F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nature Immunol.2, 487–492 (2001). CAS Google Scholar
Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8, 89–95 (1998). ArticleCASPubMed Google Scholar
Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol.14, 233–258 (1996). CASPubMed Google Scholar
Lindsten, T., June, C. H., Ledbetter, J. A., Stella, G. & Thompson, C. B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science244, 339–343 (1989). CAS Google Scholar
Boise, L. H. et al. Bcl-x, a Bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell74, 597–608 (1993). CASPubMed Google Scholar
Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, F. W. & Bluestone, J. A. CD28 costimulation promotes the production of TH2 cytokines. J. Immunol.158, 658–665 (1997). CASPubMed Google Scholar
Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science273, 104–106 (1996). CASPubMed Google Scholar
Itoh, Y. & Germain, R. N. Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual cytokine responses of CD4+ T cells. J. Exp. Med.186, 757–766 (1997). CASPubMedPubMed Central Google Scholar
Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science283, 680–682 (1999). ArticleCASPubMed Google Scholar
Raab, M. et al. p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc. Natl Acad. Sci. USA92, 8891–8895 (1995). CASPubMedPubMed Central Google Scholar
King, P. D. et al. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J. Immunol.158, 580–590 (1997). CASPubMed Google Scholar
Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature369, 327–329 (1994). CASPubMed Google Scholar
Prasad, K. V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)–Met–Xaa–Met motif. Proc. Natl Acad. Sci. USA91, 2834–2388 (1994). CASPubMedPubMed Central Google Scholar
Schneider, H., Cai, Y. C., Prasad, K. V., Shoelson, S. E. & Rudd, C. E. T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras. Eur. J. Immunol.25, 1044–1050 (1995). CASPubMed Google Scholar
Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity13, 313–322 (2000). Shows that both CD28 and CTLA-4 can associate with the serine/threonine phosphatase PP2A and indicates that PP2A might negatively regulate T-cell activation. CASPubMed Google Scholar
Cefai, D. et al. CD28 receptor endocytosis is targeted by mutations that disrupt phosphatidylinositol 3-kinase binding and costimulation. J. Immunol.160, 2223–2230 (1998). CASPubMed Google Scholar
Shan, X. et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol.20, 6945–6957. (2000). CASPubMedPubMed Central Google Scholar
Truitt, K. E. et al. CD28 delivers costimulatory signals independently of its association with phosphatidylinositol 3-kinase. J. Immunol.155, 4702–4710 (1995). CASPubMed Google Scholar
Crooks, M. E. et al. CD28-mediated costimulation in the absence of phosphatidylinositol 3-kinase association and activation. Mol. Cell. Biol.15, 6820–6828 (1995). CASPubMedPubMed Central Google Scholar
Harada, Y. et al. Novel role of phosphatidylinositol 3-kinase in CD28-mediated costimulation. J. Biol. Chem.276, 9003–9008 (2001). CASPubMed Google Scholar
Cai, Y. et al. Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86–CD28-mediated costimulation. Immunity3, 417–426 (1995). CASPubMed Google Scholar
Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nature Immunol.2, 325–332 (2001).Experiments performed using T cells from CD28-deficient mice reconstituted withCD28mutants indicate that a mutation on Y170 that abolishes its association with both PI3K and Grb2 prevents CD28-mediated increase in Bcl-xLexpression, but does not affect cytokine production or proliferation. CAS Google Scholar
Harada, Y. et al. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J. Immunol.166, 3797–3803 (2001). CASPubMed Google Scholar
Burr, J. S. et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-xL . J. Immunol.166, 5331–5335 (2001).Experiments performed using CD28-deficient T cells reconstituted by retroviral transduction with mutants of CD28 indicate that phosphorylation of Y170 might promote upregulation of Bcl-xL, whereas the C-terminal P-rich region might control IL–2 production and proliferation. CASPubMed Google Scholar
Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol.2, 37–44 (2001). Overexpression of Akt results in increasedIL2promoter activity in Jurkat cells and enhanced IL-2 and IFN-γ production in retrovirally-transduced CD28-deficient T cells, indicating that Akt activity mimics CD28-mediated T-cell signalling. CAS Google Scholar
Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biol.3, 596–601 (2001). CASPubMed Google Scholar
Holdorf, A. D. et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J. Exp. Med.190, 375–384 (1999). CASPubMedPubMed Central Google Scholar
Kim, H. H., Tharayil, M. & Rudd, C. E. Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J. Biol. Chem.273, 296–301 (1998). CASPubMed Google Scholar
Schneider, H., Prasad, K. V., Shoelson, S. E. & Rudd, C. E. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med.181, 351–355 (1995). CASPubMed Google Scholar
Damle, N. K., Doyle, L. V., Grosmaire, L. S. & Ledbetter, J. A. Differential regulatory signals delivered by antibody binding to the CD28 (Tp44) molecule during the activation of human T lymphocytes. J. Immunol.140, 1753–1761 (1988). CASPubMed Google Scholar
Brunet, J. F. et al. A new member of the immunoglobulin superfamily CTLA-4. Nature328, 267–270 (1987). CASPubMed Google Scholar
Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J.11, 3887–3895 (1992). CASPubMedPubMed Central Google Scholar
Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000). CASPubMedPubMed Central Google Scholar
Latchman, Y. et al. PD-L2 is a second ligand for PD-I and inhibits T cell activation. Nature Immunol.2, 261–268 (2001). CAS Google Scholar
Huard, B. & Karlsson, L. KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature403, 325–328 (2000). CASPubMed Google Scholar
Ostrov, D. A., Shi, W., Schwartz, J. C., Almo, S. C. & Nathenson, S. G. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science290, 816–819 (2000). CASPubMed Google Scholar
Stamper, C. C. et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature410, 608–611 (2001). Demonstration of the stable lattice between CTLA-4 and CD80. CASPubMed Google Scholar
Schwartz, J. C., Zhang, X., Fedorov, A. A., Nathenson, S. G. & Almo, S. C. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature410, 604–608 (2001). Demonstration of the stable lattice between CTLA-4 and CD86. CASPubMed Google Scholar
Zhang, Y. & Allison, J. P. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl Acad. Sci. USA94, 9273–9278 (1997). CASPubMedPubMed Central Google Scholar
Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol.159, 144–151 (1997). CASPubMed Google Scholar
Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity6, 583–589 (1997). CASPubMed Google Scholar
Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182, 459–465 (1995). CASPubMed Google Scholar
Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity1, 405–413 (1994). CASPubMed Google Scholar
Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995). CASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science270, 985–988 (1995). CASPubMed Google Scholar
Waterhouse, P., Bachmann, M. F., Penninger, J. M., Ohashi, P. S. & Mak, T. W. Normal thymic selection, normal viability and decreased lymphoproliferation in T cell receptor-transgenic CTLA-4-deficient mice. Eur. J. Immunol.27, 1887–1892 (1997). CASPubMed Google Scholar
Chambers, C. A., Kuhns, M. S. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4+ T cell responses. Proc. Natl Acad. Sci. USA96, 8603–8608 (1999). CASPubMedPubMed Central Google Scholar
Chambers, C. A., Sullivan, T. J., Truong, T. & Allison, J. P. Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur. J. Immunol.28, 3137–3143 (1998). CASPubMed Google Scholar
Chambers, C. A., Sullivan, T. J. & Allison, J. P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity7, 885–895 (1997). CASPubMed Google Scholar
Tivol, E. A. et al. CTLA4 Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol.158, 5091–5094 (1997). CASPubMed Google Scholar
Mandelbrot, D. A., McAdam, A. J. & Sharpe, A. H. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Exp. Med.189, 435–440 (1999). CASPubMedPubMed Central Google Scholar
Gajewski, T. F., Fallarino, F., Fields, P. E., Rivas, F. & Alegre, M. L. Absence of CTLA-4 lowers the activation threshold of primed CD8+ TCR-transgenic T cells: lack of correlation with Src homology domain 2-containing protein tyrosine phosphatase. J. Immunol.166, 3900–3907 (2001). CASPubMed Google Scholar
Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity6, 411–417 (1997). CASPubMed Google Scholar
Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity14, 145–155 (2001).CTLA-4-deficient DO11.10 TCR transgenic T cells are resistant to tolerance induction by systemic injection of ovalbumin peptide in an adoptive-transfer model, indicating that CTLA-4 is necessary for induction of tolerance of CD4+ T cells in this model. CASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). Crosslinking of CTLA-4 is shown to be required for the suppression by CD25+/CD4+ T cells of the proliferation of CD25−/CD4+ T cellsin vitro. CASPubMedPubMed Central Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). Blockade of CTLA-4in vivoprevents the suppressor activity of CD25+/CD4+ T cells, the transfer of which normally inhibits induction of inflammatory bowel disease in Rag-deficient mice injected with CD25−/CD4+ T cells, indicating that CTLA-4 is required for the regulatory activity of CD25+/CD4+ T cells. CASPubMedPubMed Central Google Scholar
Bachmann, M. F., Kohler, G., Ecabert, B., Mak, T. W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol.163, 1128–1131 (1999). CTLA-4-expressing cells prevent disease mediated by CTLA-4-deficient cells after adoptive transfer of bone marrow cells into lymphocyte-deficient recipients. CASPubMed Google Scholar
Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001). CASPubMed Google Scholar
Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193, 1285–1294 (2001). CASPubMedPubMed Central Google Scholar
Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med.193, 1295–1302 (2001). CASPubMedPubMed Central Google Scholar
Yamagiwa, S., Gray, J. D., Hashimoto, S. & Horwitz, D. A. A role for TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol.166, 7282–7289 (2001). CASPubMed Google Scholar
Frauwirth, K. A., Alegre, M. L. & Thompson, C. B. Induction of T cell anergy in the absence of CTLA-4/B7 interaction. J. Immunol.164, 2987–2993 (2000). CASPubMed Google Scholar
Frauwirth, K. A., Alegre, M. L. & Thompson, C. B. CTLA-4 is not required for induction of CD8+ T cell anergy in vivo. J. Immunol.167, 4936–4941 (2001). CASPubMed Google Scholar
Sotomayor, E. M., Borrello, I., Tubb, E., Allison, J. P. & Levitsky, H. I. In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc. Natl Acad. Sci. USA96, 11476–11481 (1999). CASPubMedPubMed Central Google Scholar
Tsitoura, D. C., DeKruyff, R. H., Lamb, J. R. & Umetsu, D. T. Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. J. Immunol.163, 2592–2600 (1999). CASPubMed Google Scholar
Fallarino, F., Fields, P. E. & Gajewski, T. F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med.188, 205–210 (1998). CASPubMedPubMed Central Google Scholar
Lin, H. et al. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J. Exp. Med.188, 199–204 (1998). CASPubMedPubMed Central Google Scholar
Masteller, E. L., Chuang, E., Mullen, A. C., Reiner, S. L. & Thompson, C. B. Structural analysis of CTLA-4 function in vivo. J. Immunol.164, 5319–5327 (2000). CASPubMed Google Scholar
Carreno, B. M. et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J. Immunol.165, 1352–1356 (2000). CASPubMed Google Scholar
Bradshaw, J. D. et al. Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry36, 15975–15982 (1997). CASPubMed Google Scholar
Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol.159, 144–151 (1997). CASPubMed Google Scholar
Miyatake, S., Nakaseko, C., Umemori, H., Yamamoto, T. & Saito, T. Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem. Biophys. Res. Commun.249, 444–448 (1998). CASPubMed Google Scholar
Chikuma, S., Murakami, M., Tanaka, K. & Uede, T. Janus kinase 2 is associated with a box 1-like motif and phosphorylates a critical tyrosine residue in the cytoplasmic region of cytotoxic T lymphocyte associated molecule-4. J. Cell Biochem.78, 241–250 (2000). CASPubMed Google Scholar
Chuang, E. et al. Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J. Immunol.162, 1270–1277 (1999). CASPubMed Google Scholar
Nakaseko, C. et al. Cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J. Exp. Med.190, 765–774 (1999). CASPubMedPubMed Central Google Scholar
Cinek, T., Sadra, A. & Imboden, J. B. Cutting edge: tyrosine-independent transmission of inhibitory signals by CTLA-4. J. Immunol.164, 5–8 (2000). CASPubMed Google Scholar
Baroja, M. L. et al. The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J. Immunol.164, 49–55 (2000). CASPubMed Google Scholar
Schneider, H., Prasad, K. V. S., Shoelson, S. E. & Rudd, C. E. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med.181, 351–355 (1995). CASPubMed Google Scholar
Marengere, L. E. et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science272, 1170–1173 (1996). CASPubMed Google Scholar
Schneider, H. & Rudd, C. E. Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem. Biophys. Res. Commun.269, 279–283 (2000). CASPubMed Google Scholar
Lee, K.-M. et al. Molecular basis of T cell inactivation by CTLA-4. Science282, 2263–2266 (1998). CASPubMed Google Scholar
Revilla Calvo, C., Amsen, D. & Kruisbeek, A. M. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J. Exp. Med.186, 1645–1653 (1997). Google Scholar
Olsson, C., Riesbeck, K., Dohlsten, M., Michaelsson, E. & Riebeck, K. CTLA-4 ligation suppresses CD28-induced NF-κB and AP-1 activity in mouse T cell blasts. J. Biol. Chem.14, 14400–14405 (1999). | PubMed | Google Scholar
Fraser, J. H., Rincon, M., McCoy, K. D. & Le Gros, G. CTLA4 ligation attenuates AP-1, NFAT and NF-κB activity in activated T cells. Eur. J. Immunol.29, 838–844 (1999). CASPubMed Google Scholar
Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science282, 2092–2095 (1998). CASPubMed Google Scholar
Sabapathy, K. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med.193, 317–328 (2001). CASPubMedPubMed Central Google Scholar
Yang, D. D. et al. Differentiation of CD4+ T cells to TH1 cells requires MAP kinase JNK2. Immunity9, 575–585 (1998). CASPubMed Google Scholar
Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol.9, 116–125 (1999). CASPubMed Google Scholar
Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature405, 91–94 (2000).Using T cells deficient in bothJNK1andJNK2activity, this article shows that lack ofJNKfunction does not prevent IL-2 production or proliferation of naive T cells, but results in promotion of TH2 cell differentiation, indicating thatJNKactivity normally prevents this effector function. CASPubMed Google Scholar