Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes (original) (raw)

Nature volume 353, pages 355–357 (1991)Cite this article

Abstract

MAJOR histocompatibility complex (MHC) class I molecules associate with peptides derived from endogenously synthesized antigens. Cytotoxic T-lymphocytes can thus scan class I molecules and bound peptide on the surface of cells for foreign antigenic determinants. Recent evidence1,2 demonstrates that the products of _trans_-acting, non-class I genes in the class II region of the MHC are required in the class I antigen-processing pathway. There are genes (called HAM1 and HAM2 in the mouse) in this region that encode proteins postulated to be involved in the transport of peptide fragments into the endoplasmic reticulum for association with newly synthesized class I molecules2–5. But, the mechanism by which such peptide fragments are produced remains a mystery. At least two genes encoding subunits of the low-molecular mass polypeptide (LMP) complex are tightly linked to the HAM1 and HAM2 genes. We show that the LMP complex is closely related to the proteasome (multicatalytic proteinase complex), an intra-cellular protein complex that has multiple proteolytic activities6,7. We speculate that the LMP complex may have a role in MHC class I antigen processing, and therefore that the MHC contains a cluster of genes required for distinct functions in the antigen processing pathway.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Cerundolo, V. et al. Nature 345, 449–452 (1990).
    Article ADS CAS Google Scholar
  2. Spies, T. et al. Nature 348, 744–747 (1990).
    Article ADS CAS Google Scholar
  3. Monaco, J. J., Cho, S. & Attaya, M. Science 250, 1723–1726 (1990).
    Article ADS CAS Google Scholar
  4. Deverson, E. V. et al. Nature 348, 738–741 (1990).
    Article ADS CAS Google Scholar
  5. Trowsdale, J. et al. Nature 348, 741–744 (1990).
    Article ADS CAS Google Scholar
  6. Wilk, S. & Orlowski, M. J. Neurochem. 40, 842–847 (1983).
    Article CAS Google Scholar
  7. Dahlmann, B., Kuehn, L., Rutschmann, M. & Reinauer, H. Biochem. J. 228, 161–170 (1985).
    Article CAS Google Scholar
  8. Monaco, J. J. & McDevitt, H. O. Proc. natn. Acad. Sci. U.S.A. 79, 3001–3005 (1982).
    Article ADS CAS Google Scholar
  9. Monaco, J. J. & McDevitt, H. O. Nature 309, 797–799 (1984).
    Article ADS CAS Google Scholar
  10. Monaco, J. J. & McDevitt, H. O. Hum. Immun. 15, 416–426 (1986).
    Article CAS Google Scholar
  11. Martinez, C. K. & Monaco, J. J. Nature 353 (in the press).
  12. Orlowski, M. Biochemistry 29, 10289–10297 (1990).
    Article CAS Google Scholar
  13. Rivett, A. J. Archs Biochem. Biophys. 268, 1–8 (1989).
    Article CAS Google Scholar
  14. Tanaka, K. et al. J. molec. Biol. 203, 985–996 (1988).
    Article ADS CAS Google Scholar
  15. Driscoll, J. & Goldberg, A. L. J. biol. Chem. 265, 4789–4792 (1990).
    CAS PubMed Google Scholar
  16. Eytan, E., Ganoth, D., Armon, T. & Hershko, A. Proc. natn. Acad Sci. U.S.A. 86, 7751–7755 (1989).
    Article ADS CAS Google Scholar
  17. Driscoll, J. & Goldberg, A. L. Proc. natn. Acad. Sci. U.S.A. 86, 787–791 (1989).
    Article ADS CAS Google Scholar
  18. Matthews, W., Driscoll, J., Tanaka, K., Ichihara, A. & Goldberg, A. L. Proc. natn. Acad. Sci. U.S.A. 86, 2597–2601 (1989).
    Article ADS CAS Google Scholar
  19. Arrigo, A. P., Tanaka, K., Goldberg, A. L. & Welch, W. J. Nature 331, 192–194 (1988).
    Article ADS CAS Google Scholar
  20. Spies, T. & DeMars, R. Nature 351, 323–324 (1991).
    Article ADS CAS Google Scholar
  21. Dick, L. R., Moomaw, C. R., DeMartino, G. N. & Slaughter, C. A. Biochemistry 30, 2725–2734 (1991).
    Article CAS Google Scholar
  22. Schumacher, T. N. M. et al. Nature 350, 703–706 (1991).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, 23298-0678, USA
    Michael G. Brown & John J. Monaco
  2. Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, 02115, USA
    James Driscoll

Authors

  1. Michael G. Brown
    You can also search for this author inPubMed Google Scholar
  2. James Driscoll
    You can also search for this author inPubMed Google Scholar
  3. John J. Monaco
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Brown, M., Driscoll, J. & Monaco, J. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes.Nature 353, 355–357 (1991). https://doi.org/10.1038/353355a0

Download citation

This article is cited by