Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons (original) (raw)

Nature volume 361, pages 258–260 (1993)Cite this article

Abstract

OLIGODENDROCYTES myelinate axons in the vertebrate central nervous system. It would, therefore, make sense if axons played a part in controlling the number of oligodendrocytes that develop in a myelinated tract. Although oligodendrocytes themselves normally do not divide, the precursor cells that give rise to them do. Here we show that the proliferation of oligodendrocyte precursor cells in the developing rat optic nerve depends on electrical activity in neighbouring axons, and that this activity-dependence can be circumvented by experimentally increasing the concentration of platelet-derived growth factor, which is present in the optic nerve and stimulates these cells to proliferate in culture. These findings suggest that axonal electrical activity normally controls the production and/or release of the growth factors that are responsible for proliferation of oligodendrocyte precursor cells and thereby helps to control the number of oligodendrocytes that develop in the region.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Salzer, J. L. Bunge, R. P. & Glaser, L. J. Cell Biol. 84, 767–778 (1980).
    Article CAS Google Scholar
  2. Perry, V. H. & Brown, M. C. Bioessays 14, 401–406 (1992).
    Article CAS Google Scholar
  3. Perry, V. H., Brown, M. C. & Lunn, E. R. Eur. J. Neurosci. 3, 102–105 (1991).
    Article CAS Google Scholar
  4. Anderton, B. H., Thorpe, R., Cohen, J., Selvendran, S. & Woodhams, P. J. Neurocytol. 9, 835–844 (1980).
    Article CAS Google Scholar
  5. Riccio, R. V. & Matthews, M. A. Neuroscience 16, 1027–1039 (1985).
    Article CAS Google Scholar
  6. Barres, B. A., Koroshetz, W. J., Swartz, K. J., Chun, L. L. Y., & Corey, D. P. Neuron 4, 507–524 (1990).
    Article CAS Google Scholar
  7. Barres, B. A. et al. Cell 70, 31–46 (1992).
    Article CAS Google Scholar
  8. Yeh, H. J. et al. Cell 64, 209–216 (1991).
    Article CAS Google Scholar
  9. Sasahara, M. et al. Cell 64, 217–227 (1991).
    Article CAS Google Scholar
  10. Richardson, W. D., Pringle, N., Mosley, M. J., Westermark, B. & Dubois-Dalcq, M. Cell 53, 309–319 (1988).
    Article CAS Google Scholar
  11. Pringle, N. et al. EMBO J. 8, 1049–1056 (1989).
    Article CAS Google Scholar
  12. Orkand, R. K., Nicholls, J. G. & Kuffler, S. W. J. Neurophysiol. 29, 788–806 (1966).
    Article CAS Google Scholar
  13. Wheeler, D. D., Boyarsky, L. L. & Brooks, W. H. J. Cell Physiol. 67, 141–148 (1966).
    Article CAS Google Scholar
  14. Weinreich, D. & Hammerschlag, R. Brain Res. 74, 137–142 (1975).
    Article Google Scholar
  15. Tauber, H. Waehnedlt, T. V. & Neuhoff, V. Neurosci. Lett. 16, 235–238 (1980).
    Article CAS Google Scholar
  16. Gyllensten, L. & Malmfors, T. J. Embryol exp. Morph. 11, 255–266 (1963).
    CAS PubMed Google Scholar
  17. Currie, J. & Cowan, W. M. J. comp. Neurol. 156, 123–142 (1974).
    Article CAS Google Scholar
  18. DeLong, G. R. & Sidman, R. L. J. comp. Neurol. 118, 205–224 (1962).
    Article CAS Google Scholar
  19. Friedman, S. & Shatz, C. J. Eur. J. Neurosci. 2, 243–253 (1990).
    Article Google Scholar
  20. Rasminksky, M. & Sears, T. A. J. Physiol., Lond. 227, 323–350 (1972).
    Article Google Scholar
  21. Gratzner, H. G. Science 318, 474–475 (1982).
    Article ADS Google Scholar
  22. Maguad, J. P., Sargent, I. & Mason, D. Y. J. Immun. Meth. 106, 95–100 (1988).
    Article Google Scholar
  23. Eisenbarth, G. S., Walsh, F. S. & Nirenburg, M. Proc. natn. Acad. Sci. U.S.A. 76, 4913–4916 (1979).
    Article ADS CAS Google Scholar
  24. Raff, M. C., Miller, R. H. & Noble, M. Nature 303, 390–396 (1983).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Medical Research Council Developmental Neurobiology Programme, Department of Biology, Medawar Building, University College, London, WC1E 6BT, UK
    B. A. Barres & M. C. Raff

Authors

  1. B. A. Barres
    You can also search for this author inPubMed Google Scholar
  2. M. C. Raff
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Barres, B., Raff, M. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons.Nature 361, 258–260 (1993). https://doi.org/10.1038/361258a0

Download citation

This article is cited by