Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei (original) (raw)

References

  1. Hastings, M. H. Central clocking. Trends Neurosci. 20, 459–464 (1997).
    Article CAS Google Scholar
  2. Miller, J. D., Morin, L. P., Schwartz, W. J. & Moore, R. Y. New insights into the mammalian circadian clock. Sleep 19, 641–667 (1996).
    Article CAS Google Scholar
  3. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).
    Article CAS Google Scholar
  4. Raju, U., Koumenis, C., Nunez-Regueiro, M. & Eskin, A. Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor. Science 253, 673–675 (1991).
    Article CAS Google Scholar
  5. Prosser, R. A., Macdonald, E. S. & Heller, H. C. c-fos mRNA in the suprachiasmatic nuclei in vitro shows a circadian rhythm and responds to a serotonergic agonist. Mol. Brain Res. 25, 151–156 (1994).
    Article CAS Google Scholar
  6. Guido, M. E., Goguen, D., Robertson, H. A. & Rusak, B. Spontaneous and light-evoked expression of JunB-like protein in the hamster suprachiasmatic nucleus near subjective dawn. Neurosci. Lett. 217, 9–12 (1996).
    Article CAS Google Scholar
  7. Daan, S. & Pittendrigh, C. S. A functional analysis of circadian pacemakers in nocturnal rodents, II The variability of phase response curves. J. Comp. Physiol. 106, 253–266 (1976).
    Article Google Scholar
  8. Aronin, N., Sagar, S. M., Sharp, F. R. & Schwartz, W. J. Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei. Proc. Natl. Acad. Sci. USA 87, 5959–5962 (1990).
    Article CAS Google Scholar
  9. Kornhauser, J. M., Nelson, D. E., Mayo, K. E. & Takahashi, J. S. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127–134 (1990).
    Article CAS Google Scholar
  10. Rusak, B., Robertson, H. A., Wisden, W. & Hunt, S. P. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248, 1237–1240 (1990).
    Article CAS Google Scholar
  11. Wollnik, F. et al. Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci. 7, 388–393 (1995).
    Article CAS Google Scholar
  12. Ginty, D. D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241 (1993).
    Article CAS Google Scholar
  13. Colwell, C. S., Foster, R. G. & Menaker, M. NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Res. 554, 105–110 (1991).
    Article CAS Google Scholar
  14. Colwell, C. S. & Menaker, M. NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J. Biol. Rhythms 7, 125–136 (1992).
    Article CAS Google Scholar
  15. Rosen, L. B., Ginty, D. D., Weber, M. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221 (1994).
    Article CAS Google Scholar
  16. Rusanescu, G., Qi, H., Thomas, S. M., Brugge, J. S. & Halegoua, S. Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 15, 1415–1425 (1995).
    Article CAS Google Scholar
  17. Farnsworth, C. L. et al. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524–527 (1995).
    Article CAS Google Scholar
  18. Rosen, L. B. & Greenberg, M. E. Stimulation of growth factor receptor signal transduction by activation of voltage-sensitive calcium channels. Proc. Natl. Acad. Sci. USA 93, 1113–1118 (1996).
    Article CAS Google Scholar
  19. Lev, S. et al. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745 (1995).
    Article CAS Google Scholar
  20. Enslen, H. et al. Characterization of Ca2+/calmodulin-dependent protein kinase IV: Role in transcriptional regulation. J. Biol. Chem. 269, 15520–15527 (1994).
    CAS PubMed Google Scholar
  21. Chen, H. J., RojasSoto, M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998).
    Article CAS Google Scholar
  22. Treisman, R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205–215 (1996).
    Article CAS Google Scholar
  23. Khokhlatchev, A. V. et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615 (1998).
    Article CAS Google Scholar
  24. Lenormand, P. et al. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell. Biol. 122, 1079–1088 (1993).
    Article CAS Google Scholar
  25. Nguyen, T. T. et al. Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J. Biol. Chem. 268, 9803–9810 (1993).
    CAS PubMed Google Scholar
  26. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. J. Biochem. 288, 351–355 (1992).
    Article CAS Google Scholar
  27. Gonzalez, G. A. & Montminy, M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680 (1989).
    Article CAS Google Scholar
  28. Xing, J., Kornhauser, J. M., Xia, Z., Thiele, E. A. & Greenberg, M. E. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol. Cell. Biol. 18, 1946–1955 (1998).
    Article CAS Google Scholar
  29. Impey S. et al. Crosstalk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883 (1998).
    Article CAS Google Scholar
  30. Hannibal, J. et al. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: A potential daytime regulator of the biological clock. J. Neurosci. 17, 2637–2644 (1997).
    Article CAS Google Scholar
  31. Moffett, J. R., Williamson, L., Palkovits, M. & Namboodiri, M. A. N-acetylaspartylglutamate: a transmitter candidate for the retinohypothalamic tract. Proc. Natl. Acad. Sci. USA 87, 8065–8069 (1990).
    Article CAS Google Scholar
  32. Ding, J. M. et al. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394, 381–384 (1998).
    Article CAS Google Scholar
  33. Seger, R. et al. Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc. Natl. Acad. Sci. USA 88, 6142–6146 (1991).
    Article CAS Google Scholar
  34. Finkbeiner, S. & Greenberg, M. E. Ca2+-dependent routes to Ras: Mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16, 233–236 (1996).
    Article CAS Google Scholar
  35. Ding, J. M., Faiman, L. E., Hurst, W. J., Kuriashkina, L. R. & Gillette, M. U. Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J. Neurosci. 17, 667–675 (1997).
    Article CAS Google Scholar
  36. Ding, J. M. et al. Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).
    Article CAS Google Scholar
  37. Yun, H. Y., GonzalezZulueta, M., Dawson, V. L. & Dawson, T. M. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21(ras). Proc. Natl. Acad. Sci. USA 95, 5773–5778 (1998).
    Article CAS Google Scholar
  38. Albrecht, U., Sun, Z. S., Eichele, G. & Lee, C. C. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055–1064 (1997).
    Article CAS Google Scholar
  39. Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043–1053 (1997).
    Article CAS Google Scholar
  40. Zylka, M. J., Shearman, L. P., Weaver, D. R. & Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998).
    Article CAS Google Scholar
  41. Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998) .
    Article CAS Google Scholar
  42. Ghosh, P. K., Baskaran, N. & van den Pol, A. N., Developmentally regulated gene expression of all eight metabotropic glutamate receptors in hypothalamic suprachiasmatic and arcuate nuclei—a PCR analysis. Brain Res. 102, 1–12 (1997) .
    Article CAS Google Scholar
  43. Kalsbeek, A., Buijs, R., Engelmann, M., Wotjak, C. & Landgraf, R. In vivo measurement of a diurnal variation in vasopressin release in the rat suprachiasmatic nucleus. Brain Res. 682, 75–82 (1995).
    Article CAS Google Scholar
  44. Cagampang, F. R. A., Rattay, M., Campbell, I. C., Powell, J. F. & Coen, C. W. Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex. Mol. Brain Res. 53, 277–284 (1998).
    Article CAS Google Scholar
  45. Sun, Z. S. et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003–1011 (1997).
    Article CAS Google Scholar
  46. Tei, H. et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512–516 (1997).
    Article CAS Google Scholar
  47. Glass, J. D., Hauser, U. E., Blank, J. L., Selim, M. & Rea, M. A. Differential timing of amino acid and 5-HIAA rhythms in suprachiasmatic hypothalamus. Am. J. Physiol. 265, R504–511 (1993).
    CAS PubMed Google Scholar
  48. Yoshitomi, H. et al. Involvement of MAP kinase and c-fos signaling in the inhibition of cell growth by somatostatin. Am. J. Physiol. 272, E769–774 (1997).
    CAS PubMed Google Scholar
  49. Yang, J. et al. Day-night variation of preprosomatostatin messenger RNA level in the suprachiasmatic nucleus. Mol. Cell. Neurosci. 5, 97–102 (1994).
    Article CAS Google Scholar
  50. Impey, S. et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982 (1996).
    Article CAS Google Scholar

Download references