Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21 (original) (raw)

Nature volume 381, pages 713–716 (1996)Cite this article

Abstract

PRECISE coordination of the S and M phases of the eukaryotic cell cycle is critical not only for normal cell division, but also for effective growth arrest under conditions of stress. When damaged, a cell must communicate signals to both the mitotic and DNA synthesis machineries so that a mitotic block is not followed by an extra S phase, or vice versa. The biochemical mechanisms regulating this coordination, termed checkpoints, have been identified in lower eukaryotes, but are largely unknown in mammalian cells1–3. Here we show that p21WAF1/CIP1, the prototype inhibitor of cyclin-dependent kinases (CDKs)4, is required for this coordination in human cells. In the absence of p21, DNA-damaged cells arrest in a G2-like state, but then undergo additional S phases without intervening normal mitoses. They thereby acquire grossly deformed, polyploid nuclei and subsequently die through apoptosis. Perhaps not by coincidence, the DNA-damaging agents that can cause S/M uncoupling are used in the clinic to kill cancer cells preferentially.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Murray, A. W. Nature 359, 599–604 (1992).
    Article ADS CAS Google Scholar
  2. Nurse, P. Cell 79, 547–550 (1994).
    Article CAS Google Scholar
  3. Hartwell, L. H. & Kastan, M. B. Science 266, 1821–1828 (1994).
    Article ADS CAS Google Scholar
  4. Nasmyth, K. & Hunt, T. Nature 366, 634–635 (1993).
    Article ADS CAS Google Scholar
  5. Waldman, T., Kinzler, K. W. & Vogelstein, B. Cancer Res. 55, 5187–5190 (1995).
    CAS PubMed Google Scholar
  6. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. J. Cell Biol. 119, 493–501 (1992).
    Article CAS Google Scholar
  7. Gorczyca, W., Gong, J. & Darzynkiewicz, Z. Cancer Res. 53, 1945–1951 (1993).
    CAS PubMed Google Scholar
  8. Di Leonardo, A. et al. Genes Dev. 8, 2540–2551 (1994).
    Article CAS Google Scholar
  9. Gao, X. et al. Oncogene 11, 1395–1398 (1995).
    CAS PubMed Google Scholar
  10. Shibata, D. et al. Nature Genet. 6, 273–281 (1994).
    Article CAS Google Scholar
  11. El-Deiry, W. A. et al. Cancer Res. 55, 2910–2919 (1995).
    CAS PubMed Google Scholar
  12. Macleod, K. F. et al. Genes Dev. 8, 935–944 (1995).
    Article Google Scholar
  13. Kung, A. L., Sherwood, S. W. & Schimke, R. T. Proc. natn. Acad. Sci. U.S.A. 87, 9553–9557 (1990).
    Article ADS CAS Google Scholar
  14. Kung, A. L., Zetterberg, A., Sherwood, S. W. & Schimke, R. T. Cancer Res. 50, 7307–7317 (1990).
    CAS PubMed Google Scholar
  15. Heichman, K. A. & Roberts, J. M. Cell 79, 557–562 (1994).
    Article CAS Google Scholar
  16. Li, J. J. & Deshaies, R. J. Cell 74, 223–226 (1993).
    Article CAS Google Scholar
  17. Chen, J., Jackson, P. K., Kirschner, M. W. & Dutta, A. Nature 374, 386–388 (1995).
    Article ADS CAS Google Scholar
  18. Luo, Y., Hurwitz, J. & Massague, J. Nature 375, 159–161 (1995).
    Article ADS CAS Google Scholar
  19. Graeber, T. G. et al. Nature 379, 88–91 (1996).
    Article ADS CAS Google Scholar
  20. Cross, S. M. et al. Science 267, 1353–1356 (1995).
    Article ADS CAS Google Scholar
  21. Carder, P. et al. Oncogene 8, 1397–1401 (1993).
    CAS PubMed Google Scholar
  22. Harvey, M. et al. Oncogene 8, 2457–2467 (1993).
    CAS Google Scholar
  23. Metz, T., Harris, A. W. & Adams, J. M. Cell 82, 29–36 (1995).
    Article CAS Google Scholar
  24. Morrow, C. S. & Cowan, K. H. in Cancer Medicine (eds Holland, J. F. et al.), 618–631 (Lea & Febiger, Philadelphia, 1993).
    Google Scholar
  25. Ried, T. et al. Genes, Chrom. Cancer 4, 69–74 (1992).
    Article CAS Google Scholar
  26. Lengauer, C. et al. Genet. Anal. Tech. Applic. 11, 140–147 (1994).
    Article CAS Google Scholar
  27. Lichter, P. & Cremer, T. Human Cytogenetics: A Practical Approach 157–192 (IRL University Press, Oxford, 1992).
    Google Scholar
  28. Giberson, R. T. & Demaree, R. S. Microsc. Res. Tech. 32, 246–254 (1995).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. The Howard Hughes Medical Institute, Johns Hopkins Oncology Center, and Program in Human Genetics, 424 N. Bond Street, Baltimore, Maryland, 21231, USA
    Todd Waldman, Christoph Lengauer, Kenneth W. Kinzler & Bert Vogelstein

Authors

  1. Todd Waldman
    You can also search for this author inPubMed Google Scholar
  2. Christoph Lengauer
    You can also search for this author inPubMed Google Scholar
  3. Kenneth W. Kinzler
    You can also search for this author inPubMed Google Scholar
  4. Bert Vogelstein
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Waldman, T., Lengauer, C., Kinzler, K. et al. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21.Nature 381, 713–716 (1996). https://doi.org/10.1038/381713a0

Download citation

This article is cited by