An atypical topoisomerase II from archaea with implications for meiotic recombination (original) (raw)

References

  1. Wang, J. C. DNA toposiomerases. Annu. Rev. Biochem. 65, 635–692 (1996).
    Article CAS Google Scholar
  2. Caron, P. L. & Wang, J. C. Alignment of primary sequences of DNA topoisomerases. In Advances in Pharmacology (ed. Liu, L. F.) 271–297 (Biology Academic, New York, 1994).
    Google Scholar
  3. Gupta, R. S. Phylogenetic analysis of the 90kDa heat shock family of protein sequences and an examination of the relationship among animal, plants and fungi species. Mol. Biol. Evol. 12, 1063–1073 (1995).
    CAS PubMed Google Scholar
  4. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).
    Article ADS CAS Google Scholar
  5. Atcheson, C. L., DiDomenico, B., Frackman, S., Esposito, R. E. & Elder, R. T. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc. Natl Acad. Sci. USA 84, 8035–8039 (1987).
    Article ADS CAS Google Scholar
  6. Woese, C. R. & Fox, G. E. Phylogenetic structure of prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
    Article ADS CAS Google Scholar
  7. Homes, M. L., Nuttall, S. D. & Dyall-Smith, M. L. Cosntruction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J. Bacteriol. 173, 3807–3813 (1991).
    Article Google Scholar
  8. Bergerat, A., Gadelle, D. & Forterre, P. Purification of DNA topoisomerase II from the hyperthermophilic Archaeon Sulfolobus shibatae. J. Biol. Chem. 269, 27663–27669 (1994).
    CAS PubMed Google Scholar
  9. Wilson, R. et al. 2.2 Mb of contigous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).
    Article ADS CAS Google Scholar
  10. Lin, Y. & Smith, G. R. Transient, meiosis-induced expression of rec6 and rec12 genes of Schizosaccharomyces pombe. Genetics 136, 769–779 (1994).
    CAS PubMed PubMed Central Google Scholar
  11. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273, 1058–1072 (1995).
    Article ADS Google Scholar
  12. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacterian and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
    Article ADS CAS Google Scholar
  13. Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A. & Dodson, G. Crystal structure of an N-term fragment of the DNA gyrase protein. Nature 351, 624–629 (1991).
    Article ADS CAS Google Scholar
  14. Jackson, A. P. & Maxwell, A. Identifying the catalytic residue of the ATPase reaction of DNA gyrase. Proc. Natl Acad. Sci. USA 90, 11232–11236 (1993).
    Article ADS CAS Google Scholar
  15. Louvion, F. L., Warth, R. & Picard, D. Two eukaryotic-specific regions of Hsp82 are dispensable for its viability. Proc. Natl Acad. Sci. USA 93, 13937–13942 (1996).
    Article ADS CAS Google Scholar
  16. Aronshtam, A. & Marinus, M. G. Dominant negative mutator mutations in the mutL gene of E. coli. Nucleic Acids Res. 24, 2498–2504 (1996).
    Article CAS Google Scholar
  17. Sun, H., Treco, D. & Szostak, J. W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161 (1991).
    Article CAS Google Scholar
  18. Alani, E., Padmore, R. & Kleckner, N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436 (1990).
    Article CAS Google Scholar
  19. de Massy, B., Rocco, V. & Nicolas, A. The nucleotide maping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 14, 4589–4598 (1995).
    Article CAS Google Scholar
  20. Liu, J., Wu, T.-C. & Lichten, M. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14, 4599–4608 (1995).
    Article CAS Google Scholar
  21. Keeney, S. & Kleckner, N. Covalent protein-DNA complexes at 5′ strand termini of meiosis-specific double-strand breaks in yeast. Proc. Natl Acad. Sci. USA 92, 11274–11278 (1995).
    Article ADS CAS Google Scholar
  22. Atcheson, C. L. & Esposito, R. E. Meiotic recombination in yeast. Curr. Opin. Genet. Dev. 3, 736–744 (1993).
    Article CAS Google Scholar
  23. Cao, L., Alani, E. & Kleckner, N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101 (1990).
    Article CAS Google Scholar
  24. Loidl, J., Klein, F. & Shertan, H. Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J. Cell Biol. 125, 1191–1200 (1994).
    Article CAS Google Scholar
  25. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).
    Article ADS CAS Google Scholar
  26. Szent-Gyorgyi, C. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Mol. Cell. Biol. 15, 6754–6769 (1995).
    Article CAS Google Scholar
  27. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalysed by Spoll, a member of a widely conserved protein family. Cell 88, 375–384 (1997).
    Article CAS Google Scholar
  28. de Massy, B., Baudat, F. & Nicolas, A. Initiation of meiotic recombination in Saccharomyces cerevisiae haploid meiosis. Proc. Natl Acad. Sci. USA 91, 11929–11933 (1994).
    Article ADS CAS Google Scholar

Download references