Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels (original) (raw)

References

  1. Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244 (1995).
    Article CAS Google Scholar
  2. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosd. 19, 235–263 (1996).
    Article CAS Google Scholar
  3. Stuhmer, W. et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603 (1989).
    Article ADS CAS Google Scholar
  4. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).
    Article CAS Google Scholar
  5. del Castillo, J. & Katz, B. Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. Lond. B. 146, 369–381 (1957).
    Article ADS CAS Google Scholar
  6. Monod, J., Wyman, J. & Changeaux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).
    Article CAS Google Scholar
  7. Jackson, M. B. Spontaneous openings of the acetylcholine receptor channel. Proc. Natl Acad. Sri. USA 81, 3901–3904 (1984).
    Article ADS CAS Google Scholar
  8. Picones, A. & Korenbrot, J. I. Spontaneous ligand-independent activity of the cGMP-gated ion channels in cone photoreceptors of fish. J. Physiol. (Lond.) 485, 699–714 (1995).
    Article CAS Google Scholar
  9. Goulding, E. H., Tibbs, G. R. & Siegelbaum, S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature 372, 369–374 (1994).
    Article ADS CAS Google Scholar
  10. Varnum, M. D., Black, K. D. & Zagotta, W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15, 619–625 (1995).
    Article CAS Google Scholar
  11. Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 14, 857–864 (1995).
    Article CAS Google Scholar
  12. Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).
    Article ADS CAS Google Scholar
  13. Shabb, J. B. & Corbin, J. D. Cyclic nucleotide-binding domains in proteins having diverse functions. J. Biol. Chem. 267, 5723–5726 (1992).
    CAS PubMed Google Scholar
  14. Goulding, E. H. et al. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron 8, 45–58 (1992).
    Article CAS Google Scholar
  15. Kramer, R. H., Goulding, E. H. & Siegelbaum, S. A. Potassium channel inactivation peptide blocks cyclic nucleotide-gated channels by binding to the conserved pore domain. Neuron 12, 655–662 (1994).
    Article CAS Google Scholar
  16. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571 (1990).
    Article ADS CAS Google Scholar
  17. Murrell-Lagnado, R. D. & Aldrich, R. W. Energetics of Shaker K channels block by inactivation peptides. J. Gen. Physiol. 102, 977–1003 (1993).
    Article CAS Google Scholar
  18. Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 364, 61–64 (1993).
    Article ADS CAS Google Scholar
  19. Weber, I. T. & Steitz, T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. Mol. Biol. 198, 311–326 (1987).
    Article CAS Google Scholar
  20. Bubis, J., Neitzel, J. J., Saraswat, L. D. & Taylor, S. S. A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase. J. Biol. Chem. 263, 9668–9673 (1988).
    CAS PubMed Google Scholar
  21. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).
    Article CAS Google Scholar
  22. Perutz, M. Mechanisms of Cooperativity and Allosteric Regulation in Proteins 10–12 (Cambridge University Press, Cambridge, 1990).
    Google Scholar
  23. Auerbach, A., Sigurdson, W., Chen, J. & Akk, G. Voltage dependence of mouse acetylcholine receptor gating: Different charge movements in di-, mono- and unliganded receptors. J. Physiol. (Lond.) 494, 155–170 (1996).
    Article CAS Google Scholar
  24. Li, M., Jan, Y. N. & Jan, L. Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257, 1225–1230 (1992).
    Article ADS CAS Google Scholar
  25. Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. J. Deletion analysis of K+ channel assembly. Neuron 11, 67–76 (1993).
    Article CAS Google Scholar
  26. Babila, T., Moscucci, A., Wang, H., Weaver, F. E. & Koren, G. Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment. Neuron 12, 615–626 (1994).
    Article CAS Google Scholar
  27. Tu, L. W. et al. Voltage-gated K+ channels contain multiple intersubunit association sites. J. Biol. Chem. 271, 18904–18911 (1996).
    Article CAS Google Scholar
  28. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).
    Article ADS CAS Google Scholar
  29. Liu, M., Chen, T. Y., Ahamed, B., Li, J. & Yau, K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348–1354 (1994).
    Article ADS CAS Google Scholar
  30. Gordon, S. E., Brautigan, D. L. & Zimmerman, A. L. Protein phosphatases modulate the apparent agonist affinity of the light-regulated ion channel in retinal rods. Neuron 9, 739–748 (1992).
    Article CAS Google Scholar

Download references