Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression (original) (raw)
References
Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res.68, 109–182 (1996). ArticleCAS Google Scholar
Ayer, D. E., Lawrence, Q. A. & Eiseninan, R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell80, 767–776 (1995). ArticleCAS Google Scholar
Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell80, 777–786 (1995). ArticleCAS Google Scholar
Koskinen, P. J., Ayer, D. E. & Eisenman, R. N. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Differ.6, 623–629 (1995). CASPubMed Google Scholar
Rao, G. et al. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression domain of the Myc antagonist Mxi. Oncogene12, 1165–1172 (1996). CASPubMed Google Scholar
Harper, S. E., Qiu, Y. & Sharp, P. A. Sin3 corepressor function in Myc-induced transcription and transformation. Proc. Natl Acad. Sci. USA93, 8536–8540 (1996). ArticleADSCAS Google Scholar
Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. P. & Eisenman, R. N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol.16, 5772–5781 (1996). ArticleCAS Google Scholar
Wang, H., Clark, I., Nicholson, P. R., Herskowitz, I. & Stillman, D. J. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol. Cell. Biol.10, 5927–5936 (1990). ArticleCAS Google Scholar
Wang, H. & Stillman, D. J. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol.13, 1805–1814 (1993). ArticleCAS Google Scholar
Vidal, M., Strich, R., Esposito, R. E. & Gaber, R. F. RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol.11, 6306–6316 )1991). ArticleCAS Google Scholar
Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet.8, 387–391 (1992). ArticleCAS Google Scholar
Nasmyth, K., Stillman, D. J. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell48, 579–587 (1987). ArticleCAS Google Scholar
Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol.11, 6317–6327 (1991). ArticleCAS Google Scholar
Stillman, D. J., Dorland, S. & Yu, Y. Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator. Genetics136, 781–788 (1994). CASPubMedPubMed Central Google Scholar
Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272, 408–411 (1996). ArticleADSCAS Google Scholar
Yang, A. -M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA 93, 12845–12850 (1996). ArticleADSCAS Google Scholar
Wolffe, A. P. Histone deacetylase: a regulator of transcription. Science272, 408–411 (1996). Article Google Scholar
Wade, P. A., Pruss, D. & Wolffe, A. P. Histone acetylation: chromatin in action. Trends Biochem. Sci. (in the press).
Hörlein, A. J. et al. Ligand- independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature377, 397–404 (1995). ArticleADS Google Scholar
Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol.16, 5458–5465 (1996). ArticleCAS Google Scholar
Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell74, 205–214 (1993). ArticleCAS Google Scholar
Matallana, E., Franco, L. & Perez-Ortin, J. E. Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Mol. Gen. Genet.231, 395–400 (1992). ArticleCAS Google Scholar
Cooper, J. P., Roth, S. Y. & Simpson, R. I The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev.8, 1400–1410 (1994). ArticleCAS Google Scholar
Tzamarias, D. Struhl, K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature369, 758–761 (1994). ArticleADSCAS Google Scholar
Herschbach, B. M., Arnaud, M. B. & Johnson, A. D. Transcriptional repression directed by the yeast alpha-2 protein in vitro. Nature370, 309–311 (1994). ArticleADSCAS Google Scholar
Wong, J., Shi, Y. B. & Wolffe, A. P. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev.9, 2696–2711 (1995). ArticleCAS Google Scholar
Khavari, P. A., Peterson, C. L., Tamkun, J. W. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature366, 170–174 (1993). ArticleADSCAS Google Scholar
Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SW12 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J.12, 4279–4290 (1993). ArticleCAS Google Scholar
Chiba, H. Muramatsu, M., Nomoto, A. & Kato, H. Two human homologues of Saccharomyces cerevisiae SW12/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res.22, 1815–1820 (1994). ArticleCAS Google Scholar
Dunaief, J. L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell79, 119–130 (1994). ArticleCAS Google Scholar
Strober, B. E., Dunaief, J. L.,, Guha, S. & Goff, S. P. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol.16, 1576–1583 (1996). ArticleCAS Google Scholar
Borrow, J. et al. The translocation t(8;16) (p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet.14, 33–41 (1996). ArticleADSCAS Google Scholar
Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature384, 641–643 (1996). ArticleADSCAS Google Scholar
Yang, X.-J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature382, 319–324 (1996). ArticleADSCAS Google Scholar
Haupt, Y., Alexander, W. S., Barri, G., Klinken S. P. & Adams, J, M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eµ-myc transgenic mice. Cell65, 753–763 (1991). ArticleCAS Google Scholar
van Lohuizen, M. et al. Identification of cooperating oncogenes in Eµ-myc transgenic mice by provirus tagging. Cell65, 737–752 (1991). ArticleCAS Google Scholar
van Lohuizen, M, Frasch, M., Wientjens, E. & Berns, A. Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature353, 353–355 (1991). ArticleADSCAS Google Scholar
Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992). ArticleCAS Google Scholar
Roy, A. L., Carruthers, C., Gutjahr, T. & Roder, R. G. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature365, 359–361 (1993). ArticleADSCAS Google Scholar
Li, L. H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J.13, 4070–4079 (1994). ArticleCAS Google Scholar
Lee, L. A., Dolde, C., Barret, J., Wu, C. S. & Dang, C. V. Alink between c-Myc-mediated transcriptional repression and neoplastic transformation. J. Clin. Invest.97, 1687–1695 (1996). ArticleCAS Google Scholar
Galaktionov, K., Chen, X. & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature382, 511–517 (1996). ArticleADSCAS Google Scholar
Wolffe, A. P. & Prusse, D. Targeting chromatin disruption: transcription regulators that acetylate histories. Cell84, 817–819 (1996). ArticleCAS Google Scholar
Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Corr. Opin. Genet Dev. 6, 176–184 (1996). ArticleCAS Google Scholar
Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.7, 592–604 (1993). Google Scholar
Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA93, 14503–14508 (1996). ArticleADSCAS Google Scholar
De Rubertis, F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature384, 589–591 (1996). ArticleADSCAS Google Scholar
DePinho, R. A., Schreiber-Agus, N. & Alt,F. W. Myc family oncogenes in the development of normal and neoplastic cells. Adv. Cancer Res.57, 1–46 (1991). ArticleCAS Google Scholar
Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner of Max that antagonizes Myc transcriptional activity. Cell72, 211–222 (1993). ArticleCAS Google Scholar
Yew, P. R., Liu, X. & Berk, A. J. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev.8, 190–202 (1994). ArticleCAS Google Scholar