Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression (original) (raw)

References

  1. Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109–182 (1996).
    Article CAS Google Scholar
  2. Ayer, D. E., Lawrence, Q. A. & Eiseninan, R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).
    Article CAS Google Scholar
  3. Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).
    Article CAS Google Scholar
  4. Koskinen, P. J., Ayer, D. E. & Eisenman, R. N. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Differ. 6, 623–629 (1995).
    CAS PubMed Google Scholar
  5. Rao, G. et al. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression domain of the Myc antagonist Mxi. Oncogene 12, 1165–1172 (1996).
    CAS PubMed Google Scholar
  6. Harper, S. E., Qiu, Y. & Sharp, P. A. Sin3 corepressor function in Myc-induced transcription and transformation. Proc. Natl Acad. Sci. USA 93, 8536–8540 (1996).
    Article ADS CAS Google Scholar
  7. Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. P. & Eisenman, R. N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol. 16, 5772–5781 (1996).
    Article CAS Google Scholar
  8. Wang, H., Clark, I., Nicholson, P. R., Herskowitz, I. & Stillman, D. J. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol. Cell. Biol. 10, 5927–5936 (1990).
    Article CAS Google Scholar
  9. Wang, H. & Stillman, D. J. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13, 1805–1814 (1993).
    Article CAS Google Scholar
  10. Vidal, M., Strich, R., Esposito, R. E. & Gaber, R. F. RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11, 6306–6316 )1991).
    Article CAS Google Scholar
  11. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).
    Article CAS Google Scholar
  12. Nasmyth, K., Stillman, D. J. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579–587 (1987).
    Article CAS Google Scholar
  13. Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 6317–6327 (1991).
    Article CAS Google Scholar
  14. Stillman, D. J., Dorland, S. & Yu, Y. Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator. Genetics 136, 781–788 (1994).
    CAS PubMed PubMed Central Google Scholar
  15. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).
    Article ADS CAS Google Scholar
  16. Yang, A. -M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA 93, 12845–12850 (1996).
    Article ADS CAS Google Scholar
  17. Wolffe, A. P. Histone deacetylase: a regulator of transcription. Science 272, 408–411 (1996).
    Article Google Scholar
  18. Wade, P. A., Pruss, D. & Wolffe, A. P. Histone acetylation: chromatin in action. Trends Biochem. Sci. (in the press).
  19. Hörlein, A. J. et al. Ligand- independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).
    Article ADS Google Scholar
  20. Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458–5465 (1996).
    Article CAS Google Scholar
  21. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).
    Article CAS Google Scholar
  22. Matallana, E., Franco, L. & Perez-Ortin, J. E. Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Mol. Gen. Genet. 231, 395–400 (1992).
    Article CAS Google Scholar
  23. Cooper, J. P., Roth, S. Y. & Simpson, R. I The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev. 8, 1400–1410 (1994).
    Article CAS Google Scholar
  24. Tzamarias, D. Struhl, K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369, 758–761 (1994).
    Article ADS CAS Google Scholar
  25. Herschbach, B. M., Arnaud, M. B. & Johnson, A. D. Transcriptional repression directed by the yeast alpha-2 protein in vitro. Nature 370, 309–311 (1994).
    Article ADS CAS Google Scholar
  26. Wong, J., Shi, Y. B. & Wolffe, A. P. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev. 9, 2696–2711 (1995).
    Article CAS Google Scholar
  27. Khavari, P. A., Peterson, C. L., Tamkun, J. W. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).
    Article ADS CAS Google Scholar
  28. Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SW12 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).
    Article CAS Google Scholar
  29. Chiba, H. Muramatsu, M., Nomoto, A. & Kato, H. Two human homologues of Saccharomyces cerevisiae SW12/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22, 1815–1820 (1994).
    Article CAS Google Scholar
  30. Dunaief, J. L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130 (1994).
    Article CAS Google Scholar
  31. Strober, B. E., Dunaief, J. L.,, Guha, S. & Goff, S. P. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16, 1576–1583 (1996).
    Article CAS Google Scholar
  32. Borrow, J. et al. The translocation t(8;16) (p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet. 14, 33–41 (1996).
    Article ADS CAS Google Scholar
  33. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).
    Article ADS CAS Google Scholar
  34. Yang, X.-J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).
    Article ADS CAS Google Scholar
  35. Haupt, Y., Alexander, W. S., Barri, G., Klinken S. P. & Adams, J, M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eµ-myc transgenic mice. Cell 65, 753–763 (1991).
    Article CAS Google Scholar
  36. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eµ-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).
    Article CAS Google Scholar
  37. van Lohuizen, M, Frasch, M., Wientjens, E. & Berns, A. Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 353, 353–355 (1991).
    Article ADS CAS Google Scholar
  38. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).
    Article CAS Google Scholar
  39. Roy, A. L., Carruthers, C., Gutjahr, T. & Roder, R. G. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365, 359–361 (1993).
    Article ADS CAS Google Scholar
  40. Li, L. H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).
    Article CAS Google Scholar
  41. Lee, L. A., Dolde, C., Barret, J., Wu, C. S. & Dang, C. V. Alink between c-Myc-mediated transcriptional repression and neoplastic transformation. J. Clin. Invest. 97, 1687–1695 (1996).
    Article CAS Google Scholar
  42. Galaktionov, K., Chen, X. & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382, 511–517 (1996).
    Article ADS CAS Google Scholar
  43. Wolffe, A. P. & Prusse, D. Targeting chromatin disruption: transcription regulators that acetylate histories. Cell 84, 817–819 (1996).
    Article CAS Google Scholar
  44. Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Corr. Opin. Genet Dev. 6, 176–184 (1996).
    Article CAS Google Scholar
  45. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).
    Google Scholar
  46. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).
    Article ADS CAS Google Scholar
  47. De Rubertis, F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589–591 (1996).
    Article ADS CAS Google Scholar
  48. DePinho, R. A., Schreiber-Agus, N. & Alt,F. W. Myc family oncogenes in the development of normal and neoplastic cells. Adv. Cancer Res. 57, 1–46 (1991).
    Article CAS Google Scholar
  49. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner of Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).
    Article CAS Google Scholar
  50. Yew, P. R., Liu, X. & Berk, A. J. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev. 8, 190–202 (1994).
    Article CAS Google Scholar

Download references