Scrambler and yotari disrupt the disabled gene and produce a reeler -like phenotype in mice (original) (raw)

References

  1. D'Arcangelo, G. et al. Aprotein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).
    Article ADS CAS Google Scholar
  2. Goffinet, A. M. Areal gene for reeler. Nature 374, 675–676 (1995).
    Article ADS CAS Google Scholar
  3. Rakic, P. & Caviness, V. S. J. Cortical development: view from neurological mutants two decades later. Neuron 14, 1101–1104 (1995).
    Google Scholar
  4. D'Arcangelo, G. et al. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31 (1997).
    Google Scholar
  5. Hirotsune, S. et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet. 10, 77–83 (1995).
    Google Scholar
  6. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).
    Google Scholar
  7. Miyata, T. et al. Distribution of the reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogenic antibody CR-50 on normal and reeler mice. J. Comp. Neurol. 372, 215–228 (1996).
    Google Scholar
  8. Miyata, T., Nakajima, K., Mikoshiba, K. & Ogawa, M. Regulation of purkinje cell alignment by reelin as revealed with R-50 antibody. J. Neurosci. 17, 3599–3609 (1997).
    Google Scholar
  9. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. & Davisson, M. T. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration Mamm . Genome 7, 798–802 (1996).
    Google Scholar
  10. Yoneshima, H. et al. Anovel neurological mutation of mouse, yotari, which has reeler -like phenotype but expresses reelin. Neurosci. Res. (in the press).
  11. Goldowitz, D. et al. Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. (in the press).
  12. Howell, B. W., Gertler, F. B. & Cooper, J. A. Mouse disabled (mDab1): a src binding protein implicated in neuronal development. EMBO J. 16, 121–132 (1997).
    Google Scholar
  13. Gertler, F. B., Bennett, R. L., Clark, M. J. & Hoffmann, F. M. Drosophila abl tyrosine kinase in embryonic CNS axons: a role in axogenesis is revealed through dosage-sensitive interactions with disabled . Cell 58, 103–113 (1989).
    Google Scholar
  14. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1 . Nature 389, 733–737 (1997).
    Article ADS CAS Google Scholar
  15. Tartaglia, L. A. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).
    Google Scholar
  16. Chua, S. C. J et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).
    Google Scholar
  17. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).
    Article ADS CAS Google Scholar
  18. Michaud, E. J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).
    Google Scholar
  19. Rowe, L. B. et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm. Genome 5, 253–274 (1994).
    Google Scholar
  20. Goffinet, A. M. Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. Rev. 7, 261–296 (1984).
    Google Scholar
  21. Xu, X. X., Yang, W., Jackowski, S. & Rock, C. O. Cloning of a novel phosphoprotein regulated by colony-stimulating factor 1 shares a domain with the Drosophila disabled gene product. J. Biol. Chem. 270, 14184–14191 (1995).
    Google Scholar
  22. Zhou, M. M. et al. Structure and ligand recognition of the phosphotyrosine binding domain of Sch. Nature 378, 584–592 (1995).
    Article ADS CAS Google Scholar
  23. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173–11178 (1996).
    Google Scholar
  24. Chae, T. et al. Mice lacking p35, a neuronal activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).
    Google Scholar
  25. Tang, D. et al. An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J. Biol. Chem. 270, 26897–26903 (1995).
    Google Scholar
  26. Del Rio, J. A. et al. Arole for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74 (1997).
    Article ADS CAS Google Scholar
  27. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila . Cell 67, 941–953 (1991).
    Google Scholar
  28. Oliver, G. et al. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44, 3–16 (1993).
    Google Scholar
  29. Gertler, F. B. et al. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 9, 521–533 (1995).
    Google Scholar
  30. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).
    Google Scholar
  31. Dietrich, W. F. et al. Agenetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).
    Google Scholar

Download references