NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae (original) (raw)

References

  1. Jeggo, P. A. DNA breakage and repair. Adv. Genet. 38, 185–218 (1998).
    Article CAS Google Scholar
  2. Goedecke, W., Eijpe, M., Offenberg, H. H., van Aalderen, M. & Heyting, C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nature Genet. 23, 194–198 (1999).
    Article CAS Google Scholar
  3. Åström, S. U., Okamura, S. M. & Rine, J. Yeast cell-type regulation of DNA repair. Nature 397, 310 (1999).
    Article ADS Google Scholar
  4. Lee, S. E., Pâques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in channeling double-strand breaks to homologous and nonhomologous recombination pathways. Curr. Biol. 9, 767–770 (1999).
    Article CAS Google Scholar
  5. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).
    Article CAS Google Scholar
  6. Herrmann, G., Lindahl, T. & Schar, P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 4188–4198 (1998).
    Article CAS Google Scholar
  7. Wilson, T. E., Grawunder, U. & Lieber, M. R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997).
    Article ADS CAS Google Scholar
  8. Tsukamoto, Y., Kato, J. & Ikeda, H. Hdf1, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not in homologous recombination. Nucleic Acids Res. 24, 2067–2072 (1996).
    Article CAS Google Scholar
  9. Milne, G. T., Jin, S., Shannon, K. B. & Weaver, D. T. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4189–4198 (1996).
    Article CAS Google Scholar
  10. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4348 (1996).
    Article CAS Google Scholar
  11. Schär, P., Herrmann, G., Daly, G. & Lindahl, T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in _RAD52_-independent repair of DNA double-strand breaks. Genes Dev. 11, 1912–1924 (1997).
    Article Google Scholar
  12. Teo, S. H. & Jackson, S. P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16, 4788–4795 (1997).
    Article CAS Google Scholar
  13. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).
    Article CAS Google Scholar
  14. Tsukamoto, Y., Kato, J. & Ikeda, H. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142, 383–391 (1996).
    CAS PubMed PubMed Central Google Scholar
  15. Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900–903 (1997).
    Article ADS CAS Google Scholar
  16. Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).
    Article CAS Google Scholar
  17. Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S. & Fink, G. R. Ploidy regulation of gene expression. Science 285, 251–254 (1999).
    Article CAS Google Scholar
  18. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999).
    Article ADS CAS Google Scholar
  19. Wu, X. & Haber, J. E. A 700 bp _cis_-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87, 277–285 (1996).
    Article CAS Google Scholar
  20. Teo, S. H. & Jackson, S. P. Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Curr. Biol. 10, 165–168 (2000).
    Article CAS Google Scholar
  21. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).
    Article CAS Google Scholar
  22. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).
    Article ADS CAS Google Scholar
  23. Kegel, A., Sjostrand, J. O. & Astrom, S. U. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr. Biol. 11, 1611–1617 (2001).
    Article CAS Google Scholar
  24. Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science, 8 November 2001 (10.1126/science.1065961).
  25. Frank-Vaillant, M. & Marcand, S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the Ligase IV pathway. Genes Dev. 15, 3005–3012 (2001).
    Article CAS Google Scholar
  26. Cormack, B. P. et al. Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans. Microbiology 143, 303–311 (1997).
    Article CAS Google Scholar
  27. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest DNA damage. Cell 94, 399–409 (1998).
    CAS Google Scholar
  28. Becker, D. M., Fikes, J. D. & Guarente, L. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc. Natl Acad. Sci. USA 88, 1968–1972 (1991).
    Article ADS CAS Google Scholar
  29. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).
    Article CAS Google Scholar

Download references