p53 mutant mice that display early ageing-associated phenotypes (original) (raw)

References

  1. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).
    Article CAS Google Scholar
  2. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).
    Article CAS Google Scholar
  3. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).
    Article CAS Google Scholar
  4. Itahana, K., Dimri, G. & Campisi, J. Regulation of cellular senescence by p53. Eur. J. Biochem. 268, 2784–2791 (2001).
    Article CAS Google Scholar
  5. Atadja, P., Wong, H., Garkavtsev, I., Geillette, C. & Riabowol, K. Increased activity of p53 in senescing fibroblasts. Proc. Natl Acad. Sci. USA 92, 8348–8352 (1995).
    Article ADS CAS Google Scholar
  6. Bond, J. A. et al. Evidence that transciptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13, 2097–2104 (1996).
    CAS PubMed Google Scholar
  7. Webley, K. et al. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol. Cell. Biol. 20, 2803–2808 (2000).
    Article CAS Google Scholar
  8. Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).
    Article CAS Google Scholar
  9. Bond, J. A., Wyllie, F. S. & Wynford-Thomas, D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9, 1885–1889 (1994).
    CAS PubMed Google Scholar
  10. Gire, V. & Wynford-Thomas, D. Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol. Cell. Biol. 18, 1611–1621 (1998).
    Article CAS Google Scholar
  11. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).
    Article CAS Google Scholar
  12. Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect. 93, 59–62 (1991).
    Article CAS Google Scholar
  13. Campisi, J. Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatric Soc. 45, 482–488 (1997).
    Article CAS Google Scholar
  14. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).
    Article CAS Google Scholar
  15. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).
    Article CAS Google Scholar
  16. Vogel, H., Lim, D. S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770–10775 (1999).
    Article ADS CAS Google Scholar
  17. Lim, D. S. et al. Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol. Cell. Biol. 20, 3772–3780 (2000).
    Article CAS Google Scholar
  18. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).
    Article ADS CAS Google Scholar
  19. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).
    Article ADS CAS Google Scholar
  20. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).
    Article CAS Google Scholar
  21. Purdie, C. A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).
    CAS PubMed Google Scholar
  22. Lavigueur, A. et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol. Cell. Biol. 9, 3982–3991 (1989).
    Article CAS Google Scholar
  23. Arking, R. Biology of Aging 2nd edn 153–250 (Sinauer, Sunderland, Massachusetts, 1998).
    Google Scholar
  24. Kalu, D. N. in Handbook of Physiology, Section 11: Aging (ed. Masoro, E. J.) 395–412 (Oxford Univ. Press, New York, 1995).
    Google Scholar
  25. Weiss, A., Arbell, I., Steinhagen Thiessen, E. & Silbermann, M. Structural changes in aging bone: osteopenia in the proximal femurs of female mice. Bone 12, 165–172 (1991).
    Article CAS Google Scholar
  26. Chuttani, A. & Gilchrest, B. A. in Handbook of Physiology, Section 11: Aging (ed. Masoro, E. J.) 309–324 (Oxford Univ. Press, New York, 1995).
    Google Scholar
  27. Harrison, D. E. & Archer, J. R. Biomarkers of aging: tissue markers. Future research needs, strategies, directions and priorities. Exp. Gerontol. 23, 309–321 (1988).
    Article CAS Google Scholar
  28. Shock, N. W. Aging of physiological systems. J. Chronic Dis. 36, 137–142 (1983).
    Article Google Scholar
  29. Gerstein, A. D., Phillips, T. J., Rogers, G. S. & Gilchrest, B. A. Wound healing and aging. Dermatol. Clin. 11, 749–757 (1993).
    Article CAS Google Scholar
  30. Muravchik, S. in Clinical Anesthesia 3rd edn (eds Barash, P. G., Cullen, B. F. & Stoelting, R. K.) 1125–1136 (Lippincott-Raven, Philadelphia, 1997).
    Google Scholar
  31. Harvey, R. C. & Paddleford, R. R. Management of geriatric patients. A common occurrence. Vet. Clin. North Am. Small Anim. Pract. 29, 683–699 (1999).
    Article CAS Google Scholar
  32. Harrison, D. E. Evaluating functional abilities of primitive hematopoietic stem cell populations. Curr. Top. Microbiol. Immunol. 177, 13–30 (1992).
    CAS PubMed Google Scholar
  33. Takeda, T. et al. Pathobiology of the senescence-accelerated mouse (SAM). Exp. Gerontol. 32, 117–127 (1997).
    Article CAS Google Scholar
  34. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).
    Article CAS Google Scholar
  35. Hupp, T. R., Sparks, A. & Lane, D. P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83, 237–245 (1995).
    Article CAS Google Scholar
  36. Jayaraman, J. & Prives, C. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81, 1021–1029 (1995).
    Article CAS Google Scholar
  37. Muller-Tiemann, B. F., Halazonetis, T. D. & Elting, J. J. Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl Acad. Sci. USA 95, 6079–6084 (1998).
    Article ADS CAS Google Scholar
  38. Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med. 3, 632–638 (1997).
    Article CAS Google Scholar
  39. Selivanova, G., Rybachenko, L., Jannson, E., Iotsova, V. & Wiman, K. G. Reactivation of mutant through interaction of a C-terminal preptide with the core domain. Mol. Cell. Biol. 19, 3395–3402 (1999).
    Article CAS Google Scholar
  40. Hasty, P., Ramirez-Solis, R., Krumlauf, R. & Bradley, A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350, 243–246 (1991).
    Article ADS CAS Google Scholar
  41. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual 2nd edn 189–216 (Cold Spring Harbor Laboratory Press, New York, 1994).
    Google Scholar
  42. Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 17, 4657–4667 (1998).
    Article CAS Google Scholar
  43. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).
    Article ADS CAS Google Scholar
  44. Wojcik, S. M., Bundman, D. S. & Roop, D. R. Delayed wound healing in keratin 6a knockout mice. Mol. Cell. Biol. 20, 5248–5255 (2000).
    Article CAS Google Scholar

Download references