p53 mutant mice that display early ageing-associated phenotypes (original) (raw)
References
Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell88, 323–331 (1997). ArticleCAS Google Scholar
Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev.10, 1054–1072 (1996). ArticleCAS Google Scholar
Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev.12, 2973–2983 (1998). ArticleCAS Google Scholar
Itahana, K., Dimri, G. & Campisi, J. Regulation of cellular senescence by p53. Eur. J. Biochem.268, 2784–2791 (2001). ArticleCAS Google Scholar
Atadja, P., Wong, H., Garkavtsev, I., Geillette, C. & Riabowol, K. Increased activity of p53 in senescing fibroblasts. Proc. Natl Acad. Sci. USA92, 8348–8352 (1995). ArticleADSCAS Google Scholar
Bond, J. A. et al. Evidence that transciptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene13, 2097–2104 (1996). CASPubMed Google Scholar
Webley, K. et al. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol. Cell. Biol.20, 2803–2808 (2000). ArticleCAS Google Scholar
Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res.196, 33–39 (1991). ArticleCAS Google Scholar
Bond, J. A., Wyllie, F. S. & Wynford-Thomas, D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene9, 1885–1889 (1994). CASPubMed Google Scholar
Gire, V. & Wynford-Thomas, D. Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol. Cell. Biol.18, 1611–1621 (1998). ArticleCAS Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCAS Google Scholar
Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect.93, 59–62 (1991). ArticleCAS Google Scholar
Campisi, J. Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatric Soc.45, 482–488 (1997). ArticleCAS Google Scholar
Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96, 701–712 (1999). ArticleCAS Google Scholar
Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell97, 527–538 (1999). ArticleCAS Google Scholar
Vogel, H., Lim, D. S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA96, 10770–10775 (1999). ArticleADSCAS Google Scholar
Lim, D. S. et al. Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol. Cell. Biol.20, 3772–3780 (2000). ArticleCAS Google Scholar
Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature402, 309–313 (1999). ArticleADSCAS Google Scholar
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992). ArticleADSCAS Google Scholar
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol.4, 1–7 (1994). ArticleCAS Google Scholar
Purdie, C. A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene9, 603–609 (1994). CASPubMed Google Scholar
Lavigueur, A. et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol. Cell. Biol.9, 3982–3991 (1989). ArticleCAS Google Scholar
Arking, R. Biology of Aging 2nd edn 153–250 (Sinauer, Sunderland, Massachusetts, 1998). Google Scholar
Kalu, D. N. in Handbook of Physiology, Section 11: Aging (ed. Masoro, E. J.) 395–412 (Oxford Univ. Press, New York, 1995). Google Scholar
Weiss, A., Arbell, I., Steinhagen Thiessen, E. & Silbermann, M. Structural changes in aging bone: osteopenia in the proximal femurs of female mice. Bone12, 165–172 (1991). ArticleCAS Google Scholar
Chuttani, A. & Gilchrest, B. A. in Handbook of Physiology, Section 11: Aging (ed. Masoro, E. J.) 309–324 (Oxford Univ. Press, New York, 1995). Google Scholar
Harrison, D. E. & Archer, J. R. Biomarkers of aging: tissue markers. Future research needs, strategies, directions and priorities. Exp. Gerontol.23, 309–321 (1988). ArticleCAS Google Scholar
Shock, N. W. Aging of physiological systems. J. Chronic Dis.36, 137–142 (1983). Article Google Scholar
Gerstein, A. D., Phillips, T. J., Rogers, G. S. & Gilchrest, B. A. Wound healing and aging. Dermatol. Clin.11, 749–757 (1993). ArticleCAS Google Scholar
Muravchik, S. in Clinical Anesthesia 3rd edn (eds Barash, P. G., Cullen, B. F. & Stoelting, R. K.) 1125–1136 (Lippincott-Raven, Philadelphia, 1997). Google Scholar
Harvey, R. C. & Paddleford, R. R. Management of geriatric patients. A common occurrence. Vet. Clin. North Am. Small Anim. Pract.29, 683–699 (1999). ArticleCAS Google Scholar
Harrison, D. E. Evaluating functional abilities of primitive hematopoietic stem cell populations. Curr. Top. Microbiol. Immunol.177, 13–30 (1992). CASPubMed Google Scholar
Takeda, T. et al. Pathobiology of the senescence-accelerated mouse (SAM). Exp. Gerontol.32, 117–127 (1997). ArticleCAS Google Scholar
Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell62, 671–680 (1990). ArticleCAS Google Scholar
Hupp, T. R., Sparks, A. & Lane, D. P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell83, 237–245 (1995). ArticleCAS Google Scholar
Jayaraman, J. & Prives, C. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell81, 1021–1029 (1995). ArticleCAS Google Scholar
Muller-Tiemann, B. F., Halazonetis, T. D. & Elting, J. J. Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl Acad. Sci. USA95, 6079–6084 (1998). ArticleADSCAS Google Scholar
Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med.3, 632–638 (1997). ArticleCAS Google Scholar
Selivanova, G., Rybachenko, L., Jannson, E., Iotsova, V. & Wiman, K. G. Reactivation of mutant through interaction of a C-terminal preptide with the core domain. Mol. Cell. Biol.19, 3395–3402 (1999). ArticleCAS Google Scholar
Hasty, P., Ramirez-Solis, R., Krumlauf, R. & Bradley, A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature350, 243–246 (1991). ArticleADSCAS Google Scholar
Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual 2nd edn 189–216 (Cold Spring Harbor Laboratory Press, New York, 1994). Google Scholar
Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J.17, 4657–4667 (1998). ArticleCAS Google Scholar
Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature382, 448–452 (1996). ArticleADSCAS Google Scholar
Wojcik, S. M., Bundman, D. S. & Roop, D. R. Delayed wound healing in keratin 6a knockout mice. Mol. Cell. Biol.20, 5248–5255 (2000). ArticleCAS Google Scholar