Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase (original) (raw)

References

  1. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).
    Article ADS CAS PubMed Google Scholar
  2. Muoio, D. M. et al. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46, 1360–1363 (1997).
    Article CAS PubMed Google Scholar
  3. Kamohara, S., Burcelin, R., Halaas, J. L., Friedman, J. M. & Charron, M. J. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997).
    Article ADS CAS PubMed Google Scholar
  4. Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999).
    Article CAS PubMed Google Scholar
  5. Unger, R. H., Zhou, Y.-T. & Orci, L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl Acad. Sci. USA 96, 2327–2332 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  6. Hardie D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem. 67, 821–855 (1998).
    Article PubMed Google Scholar
  7. Winder, W. W. & Hardie, D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999).
    CAS PubMed Google Scholar
  8. Kahn, B. B. & Flier, J. S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  9. Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. 276, E1–E18 (1999).
    CAS PubMed Google Scholar
  10. Lee, Y. et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 276, 5629–5635 (2001).
    Article CAS PubMed Google Scholar
  11. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).
    Article CAS PubMed Google Scholar
  12. Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. H. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).
    Article ADS CAS PubMed Google Scholar
  13. Stein, S. C., Woods, A., Jones, N. A., Davison, M. D. & Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345, 437–443 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  14. Ponticos, M. et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 17, 1688–1699 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Higaki, Y., Hirshman, M. F., Fujii, N. & Goodyear, L. J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50, 241–247 (2001).
    Article CAS PubMed Google Scholar
  16. Woods, A. et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 20, 6704–6711 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  17. Jat, P. S. et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-ts-A58 transgenic mouse. Proc. Natl. Acad. Sci. USA 88, 5096–5100 (1991).
    Article ADS CAS PubMed PubMed Central Google Scholar
  18. Fryer, L. G. D. et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49, 1978–1985 (1999).
    Article Google Scholar
  19. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  20. Kishi, K. et al. AMP-activated protein kinase is activated by the stimulations of Gq-coupled receptors. Biochem. Biophys. Res. Commun. 276, 16–22 (2000).
    Article CAS PubMed Google Scholar
  21. Martin, W. H., Tolley, T. K. & Saffitz, J. E. Autoradiogaraphic delineation of skeletal muscle α1-adrenergic receptor distribution. Am. J. Physiol. 259, H1402–H1408 (1990).
    CAS PubMed Google Scholar
  22. Akaike, N. Sodium pump in skeletal muscle: central nervous system-induced suppression by α-adrenoreceptors. Science 213, 1252–1254 (1981).
    Article ADS CAS PubMed Google Scholar
  23. Stafford I. L. & Jacobs, B. L. Noradrenergic modulation of the masseteric reflex in behaving cats. I. Pharmacological studies. J. Neurosci. 10, 91–98 (1990).
    Article PubMed Google Scholar
  24. Woods, A., Salt, I., Scott, J., Hardie, D. G. & Carling, D. The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397, 347–351 (1996).
    Article CAS PubMed Google Scholar
  25. Hayashi, T. et al. Metabolic stress and altered glucose transport. Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49, 527–531 (2000).
    Article CAS PubMed Google Scholar
  26. Goodwin, G. W. & Taegtmeyer, H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am. J. Physiol. 277, E772–E777 (1999).
    CAS PubMed Google Scholar
  27. Oakes, N. D. et al. Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. J. Lipid. Res. 40, 1155–1169 (1999).
    ADS CAS PubMed Google Scholar
  28. Corton, J. M., Gillespie, J. G. & Hardie, D. G. Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol. 4, 315–324 (1994).
    Article CAS PubMed Google Scholar
  29. Vavvas, D. et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J. Biol. Chem. 272, 13255–13261 (1997).
    Article CAS PubMed Google Scholar

Download references