Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase (original) (raw)
References
Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature395, 763–770 (1998). ArticleADSCASPubMed Google Scholar
Muoio, D. M. et al. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes46, 1360–1363 (1997). ArticleCASPubMed Google Scholar
Kamohara, S., Burcelin, R., Halaas, J. L., Friedman, J. M. & Charron, M. J. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature389, 374–377 (1997). ArticleADSCASPubMed Google Scholar
Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes48, 287–291 (1999). ArticleCASPubMed Google Scholar
Unger, R. H., Zhou, Y.-T. & Orci, L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl Acad. Sci. USA96, 2327–2332 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Hardie D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem.67, 821–855 (1998). ArticlePubMed Google Scholar
Winder, W. W. & Hardie, D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol.277, E1–E10 (1999). CASPubMed Google Scholar
Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol.276, E1–E18 (1999). CASPubMed Google Scholar
Lee, Y. et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem.276, 5629–5635 (2001). ArticleCASPubMed Google Scholar
Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature404, 661–671 (2000). ArticleCASPubMed Google Scholar
Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. H. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science291, 2613–2616 (2001). ArticleADSCASPubMed Google Scholar
Stein, S. C., Woods, A., Jones, N. A., Davison, M. D. & Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J.345, 437–443 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ponticos, M. et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J.17, 1688–1699 (1998). ArticleCASPubMedPubMed Central Google Scholar
Higaki, Y., Hirshman, M. F., Fujii, N. & Goodyear, L. J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes50, 241–247 (2001). ArticleCASPubMed Google Scholar
Woods, A. et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol.20, 6704–6711 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jat, P. S. et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-ts-A58 transgenic mouse. Proc. Natl. Acad. Sci. USA88, 5096–5100 (1991). ArticleADSCASPubMedPubMed Central Google Scholar
Fryer, L. G. D. et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes49, 1978–1985 (1999). Article Google Scholar
Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest.100, 270–278 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kishi, K. et al. AMP-activated protein kinase is activated by the stimulations of Gq-coupled receptors. Biochem. Biophys. Res. Commun.276, 16–22 (2000). ArticleCASPubMed Google Scholar
Martin, W. H., Tolley, T. K. & Saffitz, J. E. Autoradiogaraphic delineation of skeletal muscle α1-adrenergic receptor distribution. Am. J. Physiol.259, H1402–H1408 (1990). CASPubMed Google Scholar
Akaike, N. Sodium pump in skeletal muscle: central nervous system-induced suppression by α-adrenoreceptors. Science213, 1252–1254 (1981). ArticleADSCASPubMed Google Scholar
Stafford I. L. & Jacobs, B. L. Noradrenergic modulation of the masseteric reflex in behaving cats. I. Pharmacological studies. J. Neurosci.10, 91–98 (1990). ArticlePubMed Google Scholar
Woods, A., Salt, I., Scott, J., Hardie, D. G. & Carling, D. The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett.397, 347–351 (1996). ArticleCASPubMed Google Scholar
Hayashi, T. et al. Metabolic stress and altered glucose transport. Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes49, 527–531 (2000). ArticleCASPubMed Google Scholar
Goodwin, G. W. & Taegtmeyer, H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am. J. Physiol.277, E772–E777 (1999). CASPubMed Google Scholar
Oakes, N. D. et al. Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. J. Lipid. Res.40, 1155–1169 (1999). ADSCASPubMed Google Scholar
Corton, J. M., Gillespie, J. G. & Hardie, D. G. Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol.4, 315–324 (1994). ArticleCASPubMed Google Scholar
Vavvas, D. et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J. Biol. Chem.272, 13255–13261 (1997). ArticleCASPubMed Google Scholar