MAP kinase signalling cascade in Arabidopsis innate immunity (original) (raw)

References

  1. Boller, T. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 46, 189–214 (1995).
    Article CAS Google Scholar
  2. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).
    Article CAS Google Scholar
  3. Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12, 1783–1794 (2000).
    Article CAS Google Scholar
  4. Khush, R. S. & Lemaitre, B. Genes that fight infection. Trends Genet. 16, 442–449 (2000).
    Article CAS Google Scholar
  5. Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).
    Article CAS Google Scholar
  6. Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).
    Article ADS CAS Google Scholar
  7. Nurnberger, T. & Scheel, D. Signal transmission in plant immune response. Trends Plant Sci. 6, 372–379 (2001).
    Article CAS Google Scholar
  8. Staskawicz, B. J., Mudgett, M. B., Dangl, J. L. & Galan, J. E. Common and contrasting themes of plant and animal diseases. Science 292, 2285–2289 (2001).
    Article CAS Google Scholar
  9. Samakovlis, C., Asling, B., Boman, H. G., Gateff, E. & Hultmark, D. In vitro induction of cecropin genes—an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun. 188, 1169–1175 (1992).
    Article CAS Google Scholar
  10. Felix, G., Duran, J., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).
    Article CAS Google Scholar
  11. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).
    Article ADS CAS Google Scholar
  12. Gomez-Gomez, L. & Boller, T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).
    Article CAS Google Scholar
  13. Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284 (1999).
    Article CAS Google Scholar
  14. Romeis, T. et al. Rapid Avr9- and _Cf9-_dependent activation of MAP kinases in tobacco cell cultures and leaves: Convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273–287 (1999).
    CAS PubMed PubMed Central Google Scholar
  15. Blume, B., Nurnberger, T., Nass, N. & Scheel, D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12, 1425–1440 (2000).
    Article CAS Google Scholar
  16. Hirt, H. & Scheel, D. in Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction (ed. Hirt, H.) 85–93 (Springer, Heidelberg, 2000).
    Google Scholar
  17. Zhang, S. & Klessig, D. F. MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520–527 (2001).
    Article CAS Google Scholar
  18. Romeis, T. Protein kinases in the plant defence response. Curr. Opin. Plant Biol. 4, 407–414 (2001).
    Article CAS Google Scholar
  19. Tena, G., Asai, T., Chiu, W.-L. & Sheen, J. Plant MAP kinase signaling cascades. Curr. Opin. Plant Biol. 4, 392–400 (2001).
    Article CAS Google Scholar
  20. Ligterink, W., Kroj, T., Zurnieden, U., Hirt, H. & Scheel, D. Receptor-mediated activation of a MAP kinase in pathogen defense in plants. Science 276, 2054–2057 (1997).
    Article CAS Google Scholar
  21. Zhang, S. & Klessig, D. F. Resistance gene _N_-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl Acad. Sci. USA 95, 7433–7438 (1998).
    Article ADS CAS Google Scholar
  22. Zhang, S., Du, H. & Klessig, D. F. Activation of the tobacco SIP kinase by both a cell-wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10, 435–449 (1998).
    CAS PubMed PubMed Central Google Scholar
  23. Nuhse, T. S., Peck, S. C., Hirt, H. & Boller, T. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem. 275, 7521–7526 (2000).
    Article CAS Google Scholar
  24. Cardinale, F. et al. Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275, 36734–36740 (2000).
    Article CAS Google Scholar
  25. Lee, J., Klessig, D. F. & Nurnberger, T. A. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13, 1079–1093 (2001).
    Article CAS Google Scholar
  26. Sheen, J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. (in the press).
  27. Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E. & Jones, J. D. G. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12, 963–977 (2000).
    Article CAS Google Scholar
  28. Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26, 403–410 (2000).
    Article CAS Google Scholar
  29. Schenk, P. M. et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl Acad. Sci. USA 97, 11655–11660 (2000).
    Article ADS CAS Google Scholar
  30. Asai, T. et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12, 1823–1835 (2000).
    Article CAS Google Scholar
  31. Glazebrook, J. Genes controlling expression of defense responses in _Arabidopsis_—2001 status. Curr. Opin. Plant Biol. 4, 301–308 (2001).
    Article CAS Google Scholar
  32. Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 (2000).
    Article CAS Google Scholar
  33. Eulgem, T., Rushton, P. J., Schmeizer, E., Hahlbrock, K. & Somssich, I. E. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18, 4689–4699 (1999).
    Article CAS Google Scholar
  34. Du, L. & Chen, Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J. 24, 837–847 (2000).
    Article CAS Google Scholar
  35. Kovtun, Y., Chiu, W.-L., Tena, G. & Sheen, J. Function analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97, 2940–2945 (2000).
    Article ADS CAS Google Scholar
  36. Kovtun, Y., Chiu, W.-L., Zeng, W. & Sheen, J. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716–720 (1998).
    Article ADS CAS Google Scholar
  37. Mizoguchi, T., Ichimura, K., Yoshida, R. & Shinozaki, K. in Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction (ed. Hirt, H.) 29–38 (Springer, Heidelberg, 2000).
    Book Google Scholar
  38. Jouannic, S. et al. Plant MAP kinase kinase kinase structure, classification and evolution. Gene 233, 1–11 (1999).
    Article CAS Google Scholar
  39. Xiang, C., Han, P., Lutziger, I., Wang, K. & Oliver, D. J. A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717 (1999).
    Article CAS Google Scholar
  40. Peck, S. C. et al. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–1475 (2001).
    Article CAS Google Scholar
  41. Yang, K.-Y., Liu, Y. & Zhang, S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl Acad. Sci. USA 98, 741–746 (2001).
    Article ADS CAS Google Scholar
  42. Petersen, M. et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120 (2000).
    Article CAS Google Scholar
  43. Frye, C. A., Tang, D. & Innes, R. W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl Acad. Sci. USA 98, 373–378 (2001).
    Article ADS CAS Google Scholar
  44. Swiderski, M. R. & Innes, R. W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 26, 101–112 (2001).
    Article CAS Google Scholar
  45. Madhani, H. D. & Fink, G. R. The riddle of MAP kinase signalling specificity. Trends Genet. 14, 151–155 (1998).
    Article CAS Google Scholar
  46. Patharkar, O. R. & Cushman, J. C. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J. 24, 679–691 (2000).
    Article CAS Google Scholar

Download references