Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev.8, 1787–1802 (1994). ArticleCAS Google Scholar
Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationships between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol.17, 1201–1211 (1997). ArticleCAS Google Scholar
Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell90, 883–894 (1997). ArticleCAS Google Scholar
Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development125, 453–461 (1998). CASPubMed Google Scholar
Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci.1, 173–180 (2000). ArticleADSCAS Google Scholar
Dickson, B. J. Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol.11, 103–110 (2001). ArticleCAS Google Scholar
Lundquist, E. A., Reddien, P. W., Hartwieg, E., Horvitz, H. R. & Bargmann, C. I. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development128, 4475–4488 (2001). CASPubMed Google Scholar
Hariharan, I. K. et al. Characterization of rho GTPase family homologues in Drosophilamelanogaster: overexpressing Rho1 in retinal cells causes a late developmental defect. EMBO J.14, 292–302 (1995). ArticleCAS Google Scholar
Harden, N., Loh, H. Y., Chia, W. & Lim, L. A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development121, 903–914 (1995). CASPubMed Google Scholar
Newsome, T. et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell101, 283–294 (2000). ArticleCAS Google Scholar
Hakeda-Suzuki, S. et al. Rac function and regulation during Drosophila development. Nature416, 438–442 (2002). ArticleADSCAS Google Scholar
Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature349, 117–127 (1991). ArticleADSCAS Google Scholar
Worthylate, D. K., Rossman, K. L. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature408, 682–688 (2000). ArticleADS Google Scholar
Mosteller, R. D., Han, J. & Broek, D. Identification of residues of the H-ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell Biol.14, 1104–1112 (1994). ArticleCAS Google Scholar
Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development126, 4065–4076 (1999). CASPubMed Google Scholar
Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells. Development124, 761–771 (1997). CASPubMed Google Scholar
Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron22, 451–461 (1999). ArticleCAS Google Scholar
Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell87, 519–529 (1996). ArticleCAS Google Scholar
Joneson, T., McDonough, M., Bar-Sagi, D. & Van Aelst, L. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science274, 1374–1376 (1996). ArticleADSCAS Google Scholar
Morreale, A. et al. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nature Struct. Biol.7, 384–388 (2000). ArticleCAS Google Scholar
Owen, D., Mott, H. R., Laue, E. D. & Lowe, P. N. Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry39, 1243–1250 (2000). ArticleCAS Google Scholar
Hing, H., Xiao, J., Harden, N., Lim, L. & Zipursky, S. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell97, 853–863 (1999). ArticleCAS Google Scholar
Yamada, K. M., Spooner, B. S. & Wessells, N. K. Axon growth: roles of microfilaments and microtubules. Proc. Natl Acad. Sci. USA66, 1206–1212 (1970). ArticleADSCAS Google Scholar
Marsh, L. & Letourneau, P. C. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J. Cell. Biol.99, 2041–2047 (1984). ArticleCAS Google Scholar
Bentley, D. & Toroian-Raymond, A. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature323, 712–715 (1986). ArticleADSCAS Google Scholar
Scott, E. K. & Luo, L. How do dendrites take their shape? Nature Neurosci.4, 359–365 (2001). ArticleCAS Google Scholar
Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell96, 771–784 (1999). ArticleCAS Google Scholar
Knaus, U. G., Heyworth, P. G., Kinsella, B. T., Curnutte, J. T. & Bokoch, G. M. Purification and characterization of Rac2. J. Biol. Chem.267, 23575–23582 (1992). CASPubMed Google Scholar
Ito, K. & Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol.149, 134–148 (1992). ArticleCAS Google Scholar