Rac GTPases control axon growth, guidance and branching (original) (raw)

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    Article ADS CAS Google Scholar
  2. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).
    Article CAS Google Scholar
  3. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationships between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).
    Article CAS Google Scholar
  4. Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894 (1997).
    Article CAS Google Scholar
  5. Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development 125, 453–461 (1998).
    CAS PubMed Google Scholar
  6. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).
    Article ADS CAS Google Scholar
  7. Dickson, B. J. Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–110 (2001).
    Article CAS Google Scholar
  8. Lundquist, E. A., Reddien, P. W., Hartwieg, E., Horvitz, H. R. & Bargmann, C. I. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475–4488 (2001).
    CAS PubMed Google Scholar
  9. Hariharan, I. K. et al. Characterization of rho GTPase family homologues in Drosophila melanogaster: overexpressing Rho1 in retinal cells causes a late developmental defect. EMBO J. 14, 292–302 (1995).
    Article CAS Google Scholar
  10. Harden, N., Loh, H. Y., Chia, W. & Lim, L. A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development 121, 903–914 (1995).
    CAS PubMed Google Scholar
  11. Newsome, T. et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101, 283–294 (2000).
    Article CAS Google Scholar
  12. Hakeda-Suzuki, S. et al. Rac function and regulation during Drosophila development. Nature 416, 438–442 (2002).
    Article ADS CAS Google Scholar
  13. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).
    Article ADS CAS Google Scholar
  14. Worthylate, D. K., Rossman, K. L. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).
    Article ADS Google Scholar
  15. Mosteller, R. D., Han, J. & Broek, D. Identification of residues of the H-ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell Biol. 14, 1104–1112 (1994).
    Article CAS Google Scholar
  16. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).
    CAS PubMed Google Scholar
  17. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells. Development 124, 761–771 (1997).
    CAS PubMed Google Scholar
  18. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).
    Article CAS Google Scholar
  19. Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).
    Article CAS Google Scholar
  20. Joneson, T., McDonough, M., Bar-Sagi, D. & Van Aelst, L. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274, 1374–1376 (1996).
    Article ADS CAS Google Scholar
  21. Morreale, A. et al. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nature Struct. Biol. 7, 384–388 (2000).
    Article CAS Google Scholar
  22. Owen, D., Mott, H. R., Laue, E. D. & Lowe, P. N. Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry 39, 1243–1250 (2000).
    Article CAS Google Scholar
  23. Hing, H., Xiao, J., Harden, N., Lim, L. & Zipursky, S. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97, 853–863 (1999).
    Article CAS Google Scholar
  24. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Axon growth: roles of microfilaments and microtubules. Proc. Natl Acad. Sci. USA 66, 1206–1212 (1970).
    Article ADS CAS Google Scholar
  25. Marsh, L. & Letourneau, P. C. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J. Cell. Biol. 99, 2041–2047 (1984).
    Article CAS Google Scholar
  26. Bentley, D. & Toroian-Raymond, A. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323, 712–715 (1986).
    Article ADS CAS Google Scholar
  27. Scott, E. K. & Luo, L. How do dendrites take their shape? Nature Neurosci. 4, 359–365 (2001).
    Article CAS Google Scholar
  28. Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).
    Article CAS Google Scholar
  29. Knaus, U. G., Heyworth, P. G., Kinsella, B. T., Curnutte, J. T. & Bokoch, G. M. Purification and characterization of Rac2. J. Biol. Chem. 267, 23575–23582 (1992).
    CAS PubMed Google Scholar
  30. Ito, K. & Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 149, 134–148 (1992).
    Article CAS Google Scholar

Download references