Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull.49, 377–391 (1999). ArticleCASPubMed Google Scholar
Fitch, M. T. & Silver, J. CNS Regeneration: Basic Science and Clinical Advances (eds Tuszynski, M. H. & Kordower, J. H.) 55–88 (Academic, San Diego, 1999). Book Google Scholar
McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci.11, 3398–3411 (1991). ArticleCASPubMedPubMed Central Google Scholar
Smith-Thomas, L. C. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell Sci.107, 1687–1695 (1994). CASPubMed Google Scholar
Niederost, B. P., Zimmermann, D. R., Schwab, M. E. & Bandtlow, C. E. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci.19, 8979–8989 (1999). ArticleCASPubMedPubMed Central Google Scholar
Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci.19, 5810–5822 (1999). ArticleCASPubMedPubMed Central Google Scholar
McKeon, R. J., Hoke, A. & Silver, J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol.136, 32–43 (1995). ArticleCASPubMed Google Scholar
Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. & Muir, D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol.154, 654–662 (1998). ArticleCASPubMed Google Scholar
Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci.19, 8778–8788 (1999). ArticleCASPubMedPubMed Central Google Scholar
Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci.4, 465–466 (2001). ArticleCASPubMed Google Scholar
Bradbury, E. J., McMahon, S. B. & Ramer, M. S. Keeping in touch: sensory neurone regeneration in the CNS. Trends Pharmacol. Sci.21, 389–394 (2000). ArticleCASPubMed Google Scholar
Mori, M., Kose, A., Tsujino, T. & Tanaka, C. Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J. Comp Neurol.299, 167–177 (1990). ArticleCASPubMed Google Scholar
Hill, C. E., Beattie, M. S. & Bresnahan, J. C. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp. Neurol.171, 153–169 (2001). ArticleCASPubMed Google Scholar
Wall, P. D. & Lidierth, M. Five sources of a dorsal root potential: their interactions and origins in the superficial dorsal horn. J. Neurophysiol.78, 860–871 (1997). ArticleCASPubMed Google Scholar
Ramer, M. S., Priestley, J. V. & McMahon, S. B. Functional regeneration of sensory axons into the adult spinal cord. Nature403, 312–316 (2000). ArticleADSCASPubMed Google Scholar
Murray, M. Strategies and mechanisms of recovery after spinal cord injury. Adv. Neurol.72, 219–225 (1997). CASPubMed Google Scholar
McKeon, R. J., Jurynec, M. J. & Buck, C. R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci.19, 10778–10788 (1999). ArticleCASPubMedPubMed Central Google Scholar
Plant, G. W., Bates, M. L. & Bunge, M. B. Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol. Cell Neurosci.17, 471–487 (2001). ArticleCASPubMed Google Scholar
Bregman, B. S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature378, 498–501 (1995). ArticleADSCASPubMed Google Scholar
Pasterkamp, R. J., Anderson, P. N. & Verhaagen, J. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur. J. Neurosci.13, 457–471 (2001). ArticleCASPubMed Google Scholar
Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neurosci.1, 124–131 (1998). ArticleCASPubMed Google Scholar
Ramer, M. S., Harper, G. P. & Bradbury, E. J. Progress in spinal cord research—a refined strategy for the International Spinal Research Trust. Spinal Cord38, 449–472 (2000). ArticleCASPubMed Google Scholar
Fouad, K., Dietz, V. & Schwab, M. E. Improving axonal growth and functional recovery after experimental spinal cord injury by neutralizing myelin associated inhibitors. Brain Res. Brain Res. Rev.36, 204–212 (2001). ArticleCASPubMed Google Scholar
Jones, L. L., Oudega, M., Bunge, M. B. & Tuszynski, M. H. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J. Physiol.533, 83–89 (2001). ArticleCASPubMedPubMed Central Google Scholar
Murray, M. & Fischer, I. Transplantation and gene therapy: combined approaches for repair of spinal cord injury. Neuroscientist7, 28–41 (2001). ArticleCASPubMed Google Scholar
Bradbury, E. J. et al. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur. J. Neurosci.11, 3873–3883 (1999). ArticleCASPubMed Google Scholar
Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp. Neurol.119, 153–164 (1993). ArticleCASPubMed Google Scholar