Chondroitinase ABC promotes functional recovery after spinal cord injury (original) (raw)

References

  1. Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).
    Article CAS PubMed Google Scholar
  2. Fitch, M. T. & Silver, J. CNS Regeneration: Basic Science and Clinical Advances (eds Tuszynski, M. H. & Kordower, J. H.) 55–88 (Academic, San Diego, 1999).
    Book Google Scholar
  3. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  4. Smith-Thomas, L. C. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell Sci. 107, 1687–1695 (1994).
    CAS PubMed Google Scholar
  5. Niederost, B. P., Zimmermann, D. R., Schwab, M. E. & Bandtlow, C. E. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979–8989 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  6. Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  7. McKeon, R. J., Hoke, A. & Silver, J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136, 32–43 (1995).
    Article CAS PubMed Google Scholar
  8. Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. & Muir, D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154, 654–662 (1998).
    Article CAS PubMed Google Scholar
  9. Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778–8788 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  10. Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci. 4, 465–466 (2001).
    Article CAS PubMed Google Scholar
  11. Chong, M. S. et al. GAP-43 expression in primary sensory neurons following central axotomy. J. Neurosci. 14, 4375–4384 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  12. Bradbury, E. J., McMahon, S. B. & Ramer, M. S. Keeping in touch: sensory neurone regeneration in the CNS. Trends Pharmacol. Sci. 21, 389–394 (2000).
    Article CAS PubMed Google Scholar
  13. Mori, M., Kose, A., Tsujino, T. & Tanaka, C. Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J. Comp Neurol. 299, 167–177 (1990).
    Article CAS PubMed Google Scholar
  14. Hill, C. E., Beattie, M. S. & Bresnahan, J. C. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp. Neurol. 171, 153–169 (2001).
    Article CAS PubMed Google Scholar
  15. Wall, P. D. & Lidierth, M. Five sources of a dorsal root potential: their interactions and origins in the superficial dorsal horn. J. Neurophysiol. 78, 860–871 (1997).
    Article CAS PubMed Google Scholar
  16. Ramer, M. S., Priestley, J. V. & McMahon, S. B. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312–316 (2000).
    Article ADS CAS PubMed Google Scholar
  17. Murray, M. Strategies and mechanisms of recovery after spinal cord injury. Adv. Neurol. 72, 219–225 (1997).
    CAS PubMed Google Scholar
  18. Levine, J. M. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci. 14, 4716–4730 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  19. McKeon, R. J., Jurynec, M. J. & Buck, C. R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10778–10788 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  20. Asher, R. A. et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20, 2427–2438 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  21. Plant, G. W., Bates, M. L. & Bunge, M. B. Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol. Cell Neurosci. 17, 471–487 (2001).
    Article CAS PubMed Google Scholar
  22. Bregman, B. S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).
    Article ADS CAS PubMed Google Scholar
  23. Pasterkamp, R. J., Anderson, P. N. & Verhaagen, J. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur. J. Neurosci. 13, 457–471 (2001).
    Article CAS PubMed Google Scholar
  24. Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neurosci. 1, 124–131 (1998).
    Article CAS PubMed Google Scholar
  25. Ramer, M. S., Harper, G. P. & Bradbury, E. J. Progress in spinal cord research—a refined strategy for the International Spinal Research Trust. Spinal Cord 38, 449–472 (2000).
    Article CAS PubMed Google Scholar
  26. Fouad, K., Dietz, V. & Schwab, M. E. Improving axonal growth and functional recovery after experimental spinal cord injury by neutralizing myelin associated inhibitors. Brain Res. Brain Res. Rev. 36, 204–212 (2001).
    Article CAS PubMed Google Scholar
  27. Jones, L. L., Oudega, M., Bunge, M. B. & Tuszynski, M. H. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J. Physiol. 533, 83–89 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  28. Murray, M. & Fischer, I. Transplantation and gene therapy: combined approaches for repair of spinal cord injury. Neuroscientist 7, 28–41 (2001).
    Article CAS PubMed Google Scholar
  29. Bradbury, E. J. et al. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur. J. Neurosci. 11, 3873–3883 (1999).
    Article CAS PubMed Google Scholar
  30. Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp. Neurol. 119, 153–164 (1993).
    Article CAS PubMed Google Scholar

Download references