Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol.15, 435–467 (1999) ArticleCASPubMed Google Scholar
Koepp, D. M., Harper, J. W. & Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell97, 431–434 (1999) ArticleCASPubMed Google Scholar
Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature413, 316–322 (2001) ArticleADSCASPubMed Google Scholar
Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science294, 173–177 (2001) ArticleADSCASPubMed Google Scholar
Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature413, 311–316 (2001) ArticleADSCASPubMed Google Scholar
Slingerland, J. & Pagano, M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J. Cell Physiol.183, 10–17 (2000) ArticleCASPubMed Google Scholar
Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science260, 1317–1320 (1993) ArticleADSCASPubMed Google Scholar
Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science284, 455–461 (1999) ArticleADSCASPubMed Google Scholar
Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell102, 549–552 (2000) ArticleCASPubMed Google Scholar
Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell86, 263–274 (1996) ArticleCASPubMed Google Scholar
Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell91, 209–219 (1997) ArticleCASPubMed Google Scholar
Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell91, 221–230 (1997) ArticleCASPubMed Google Scholar
Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science284, 662–665 (1999) ArticleADSCASPubMed Google Scholar
Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science284, 657–661 (1999) ArticleADSCASPubMed Google Scholar
Ohta, T., Michel, J. J., Schottelius, A. J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell3, 535–541 (1999) ArticleCASPubMed Google Scholar
Seol, J. H. et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev.13, 1614–1626 (1999) ArticleCASPubMedPubMed Central Google Scholar
Kipreos, E. T. & Pagano, M. The F-box protein family. Genome Biol.1, 3002.1–3002.7 (2000) Article Google Scholar
Ganoth, D. et al. The cell-cycle regulatory protein Cks1 is required for SCF (Skp2)-mediated ubiquitinylation of p27. Nature Cell Biol.3, 321–324 (2001) ArticleCASPubMed Google Scholar
Spruck, C. et al. A CDK-independent function of mammalian Cks1. Targeting of SCF (Skp2) to the CDK inhibitor p27 (Kip1). Mol. Cell7, 639–650 (2001) ArticleCASPubMed Google Scholar
Kipreos, E. T., Lander, L. E., Wing, J. P., He, W. W. & Hedgecock, E. M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell85, 829–839 (1996) ArticleCASPubMed Google Scholar
Ivan, M. & Kaelin, W. G. Jr The von Hippel-Lindau tumor suppressor protein. Curr. Opin. Genet. Dev.11, 27–34 (2001) ArticleCASPubMed Google Scholar
Zachariae, W. et al. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science279, 1216–1219 (1998) ArticleADSCASPubMed Google Scholar
Yu, H. et al. Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science279, 1219–1222 (1998) ArticleADSCASPubMed Google Scholar
Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature408, 381–386 (2000) ArticleADSCASPubMed Google Scholar
Rice, L. M. & Brunger, A. T. Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Mol. Cell4, 85–95 (1999) ArticleCASPubMed Google Scholar
Mathias, N. et al. Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol. Cell Biol.16, 6634–6643 (1996) ArticleCASPubMedPubMed Central Google Scholar
Grossberger, R. et al. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. J. Biol. Chem.274, 14500–14507 (1999) ArticleCASPubMed Google Scholar
Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell102, 533–539 (2000) ArticleCASPubMed Google Scholar
Chen, A. et al. The conserved RING-H2 finger of ROC1 is required for ubiquitin ligation. J. Biol. Chem.275, 15432–15439 (2000) ArticleCASPubMed Google Scholar
Read, M. A. et al. Nedd8 modification of cul-1 activates SCF (beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol. Cell Biol.20, 2326–2333 (2000) ArticleCASPubMedPubMed Central Google Scholar
Morimoto, M., Nishida, T., Honda, R. & Yasuda, H. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF (skp2) toward p27 (kip 1). Biochem. Biophys. Res. Commun.270, 1093–1096 (2000) ArticleCASPubMed Google Scholar
Wu, K., Chen, A., Tan, P. & Pan, Z. Q. The Nedd8-conjugated ROC1-CUL1 core ubiquitin ligase utilizes Nedd8 charged surface residues for efficient polyubiquitin chain assembly catalyzed by Cdc34. J. Biol. Chem.277, 516–527(2002) ArticleCASPubMed Google Scholar
Shirane, M. et al. Down-regulation of p27 (Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem.274, 13886–13893 (1999) ArticleCASPubMed Google Scholar
Patton, E. E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev.12, 692–705 (1998) ArticleCASPubMedPubMed Central Google Scholar
Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T. & Ballard, D. W. Signal-induced degradation of l kappa B alpha requires site-specific ubiquitination. Proc. Natl Acad. Sci. USA92, 11259–11263 (1995) ArticleADSCASPubMedPubMed Central Google Scholar
Stroschein, S. L., Bonni, S., Wrana, J. L. & Luo, K. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev.15, 2822–2836 (2001) CASPubMedPubMed Central Google Scholar
Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCASPubMed Google Scholar
de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997) ArticleCASPubMed Google Scholar
Brunger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCASPubMed Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr.A 47, 110–119 (1991) Article Google Scholar
CCP4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. Crystal structure of the p27Kip 1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature382, 325–331 (1996) ArticleADSCASPubMed Google Scholar
Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946–950 (1991) Article Google Scholar
Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insight from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet.11, 281–296 (1991) ArticleCASPubMed Google Scholar