The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function (original) (raw)

References

  1. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivator p300 and CBP are histone acetyltransferases. Cell 87, 953–960 (1996).
    Article CAS Google Scholar
  2. Bannister, A. J. & Kouzarides, T. The CBP coactivator is a histone acetyltransferase. Nature 384, 641–643 (1996).
    Article ADS CAS Google Scholar
  3. Kamei, Y. et al. ACBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 1–12 (1996).
    Article Google Scholar
  4. Yao, T.-P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA 93, 10626–10631 (1996).
    Article ADS CAS Google Scholar
  5. Hanstein, B. et al. p300 is a component of an estrogen receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 11540–11545 (1996).
    Article ADS CAS Google Scholar
  6. Chakravarti, D. et al. Role of CBP/p300 in nuclear receptor signalling. Nature 383, 99–103 (1996).
    Article ADS CAS Google Scholar
  7. Kwok, R. P. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).
    Article ADS CAS Google Scholar
  8. Arias, J. et al. Activation of cAMP and mitogen-responsive genes relies on a common nuclear factor. Nature 370, 226–229 (1994).
    Article ADS CAS Google Scholar
  9. Eckner, R., Yao, T.-P., Oldread, E. & Livingston, D. M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10, 2478–2490 (1996).
    Article CAS Google Scholar
  10. Bhattacharya, S. et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383, 344–347 (1996).
    Article ADS CAS Google Scholar
  11. Zhang, J. J. et al. Two contact regions between Stat1 and CBP/p300 in interferon γ signaling. Proc. Natl Acad. Sci. USA 93, 15092–15096 (1996).
    Article ADS CAS Google Scholar
  12. Horvai, A. E. et al. Nuclear integration of JAK/STAT and ras signaling by CBP and p300. Proc. Natl Acad. Sci. USA 94, 1074–1079 (1997).
    Article ADS CAS Google Scholar
  13. Chambon, P. The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol. 5, 115–125 (1994).
    Article CAS Google Scholar
  14. Beato, M., Herrlich, P. & Schütz, G. Steroid hormone receptors: many actors in search of a plot. Cell 83, 851–857 (1995).
    Article CAS Google Scholar
  15. Tsai, M. J. & O'Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63, 451–486 (1994).
    Article CAS Google Scholar
  16. Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. Identification of a conserved region required for hormone-dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).
    Article CAS Google Scholar
  17. Durand, B. et al. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5380 (1994).
    Article CAS Google Scholar
  18. Barettino, D., Vivanco Ruiz, M. M. & Stunnenberg, H. G. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13, 3039–3049 (1994).
    Article CAS Google Scholar
  19. Tone, Y., Collingwood, T. N., Adams, M. & Chatterjee, V. K. Functional analysis of a transactivation domain in the thyroid hormone beta receptor. J. Biol. Chem. 369, 31157–31161 (1994).
    Google Scholar
  20. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).
    Article ADS CAS Google Scholar
  21. Renaud, J.-P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).
    Article ADS CAS Google Scholar
  22. Wagner, R. L. et al. Astructural role for hormone in the thyroid hormone receptor. Nature 378, 690–696 (1995).
    Article ADS CAS Google Scholar
  23. Halachmi, S. et al. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264, 1455–1458 (1994).
    Article ADS CAS Google Scholar
  24. Cavailles, V. et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14, 3741–3751 (1995).
    Article CAS Google Scholar
  25. Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451–454 (1995).
    Article ADS CAS Google Scholar
  26. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8338 (1996).
    Article ADS CAS Google Scholar
  27. Lee, J. W., Ryan, F., Swaffield, J. C., Johnston, S. A. & Moore, D. D. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374, 91–94 (1995).
    Article ADS CAS Google Scholar
  28. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-ref in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).
    Article CAS Google Scholar
  29. Oñate, S. A., Tsai, S. Y., Tsai, M.-J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).
    Article ADS Google Scholar
  30. Cavailles, N., Dauvois, S., Danielian, P. S. & Parker, M. G. Interaction of proteins with transcriptionally active estrogen receptors. Proc. Natl Acad. Sci. USA 91, 10009–10013 (1994).
    Article ADS CAS Google Scholar
  31. Voegel, J. J., Heine, M. J. S., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).
    Article CAS Google Scholar
  32. Hong, H., Kohli, K., Trivedi, A., Johnson, D. L. & Stallcup, M. R. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl Acad. Sci. USA 93, 4948–4952 (1996).
    Article ADS CAS Google Scholar
  33. Smith, C. L., Oñate, S. A., Tsai, M.-J. & O'Malley, B. W. CREB binding protein acta synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc. Natl Acad. Sci. USA 93, 8884–8888 (1996).
    Article ADS CAS Google Scholar
  34. Geourjon, C. & Deleage, G. SOPM: a self optimised prediction method for protein secondary structure prediction. Protein Eng. 7, 157–164 (1994).
    Article CAS Google Scholar
  35. Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528–540 (1996).
    Article CAS Google Scholar
  36. Lee, J.-S. et al. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev. 9, 1188–1198 (1995).
    Article ADS CAS Google Scholar
  37. Oliner, J. D., Andresen, J. M., Hansen, S. K., Zhou, S. & Tjian, R. SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev. 10, 2903–2911 (1996).
    Article CAS Google Scholar
  38. Bisotto, S., Minorgan, S. & Rehfus, R. P. Identification and characterization of a novel transcriptional activation domain in the CREB-binding protein. J. Biol. Chem. 271, 17746–17750 (1996).
    Article CAS Google Scholar
  39. Swope, D. L., Mueller, C. L. & Chrivia, J. C. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271, 28138–28145 (1996).
    Article CAS Google Scholar
  40. Nakajima, T., Uchida, C., Anderson, S. F., Parvin, J. D. & Montminy, M. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11, 738–747 (1997).
    Article CAS Google Scholar
  41. Yang, X.-Y., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).
    Article ADS CAS Google Scholar
  42. Nakajima, T. et al. The signal-dependent coactivator CBP is a nuclear target for pp90 rsk. Cell 86, 465–474 (1996).
    Article CAS Google Scholar
  43. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803 (1993).
    Article CAS Google Scholar
  44. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene, New York, 1994).
    Google Scholar
  45. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).
    Google Scholar
  46. Laemmle, E. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
    Article ADS Google Scholar
  47. Rose, D. W., McCabe, G., Feramisco, J. R. & Adler, M. Expression of c-fos and AP-1 activity in senescent human fibroblasts is not sufficient for DNA synthesis. J. Cell. Biol. 119, 1405–1411 (1992).
    Article CAS Google Scholar

Download references