Selecting and maintaining a diverse T-cell repertoire (original) (raw)
Zinkernagel,R. M. & Doherty,P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature248, 701–710 (1974). ADSCASPubMed Google Scholar
Babbitt,B. P., Allen,P. M., Matsueda,G., Haber,E. & Unanue,E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature317, 359–361 (1985). ADSCASPubMed Google Scholar
Townsend,A. R., Gotch,F. M. & Davey,J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell42, 457–467 (1985). CASPubMed Google Scholar
Shortman,K. & Wu,L. Early T lymphocyte progenitors. Annu. Rev. Immunol.14, 29–47 (1996). CASPubMed Google Scholar
Jameson,S. C., Hogquist,K. A. & Bevan,M. J. Positive selection of thymocytes. Annu. Rev. Immunol.13, 93–126 (1995). CASPubMed Google Scholar
Kisielow,P. & von Boehmer,H. Development and selection of T cells: facts and puzzles. Adv. Immunol.58, 87–209 (1995). CASPubMed Google Scholar
Davis,M. M. & Bjorkman,P. J. T-cell antigen receptor genes and T-cell recognition. Nature334, 395–402 (1988). ADSCASPubMed Google Scholar
Bjorkman,P. J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature329, 506–512 (1987). ADSCASPubMed Google Scholar
Brown,J. H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature364, 33–39 (1993). ADSCASPubMed Google Scholar
Scott,C. A., Peterson,P. A., Teyton,L. & Wilson,I. A. Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity8, 319–329 (1998). CASPubMed Google Scholar
Garcia,K. C. et al. An alpha beta T cell receptor structure at 2.5?Å and its orientation in the TCR–MHC complex. Science274, 209–219 (1996). ADSCASPubMed Google Scholar
Garcia,K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide–MHC antigen. Science279, 1166–1172 (1998). ADSCASPubMed Google Scholar
Garboczi,D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature384, 134–141 (1996). ADSCASPubMed Google Scholar
Ding,Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity8, 403–411 (1998). CASPubMed Google Scholar
Garcia,K. C., Teyton,L. & Wilson,I. A. Structural basis of T cell recognition. Annu. Rev. Immunol.17, 369–397 (1999). CASPubMed Google Scholar
Teng,M. K. et al. Identification of a common docking topology with substantial variation among different TCR–peptide–MHC complexes. Curr. Biol.8, 409–412 (1998). CASPubMed Google Scholar
Fehling,H. J. & von Boehmer,H. Early alpha beta T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol.9, 263–275 (1997). CASPubMed Google Scholar
Irving,B. A., Alt,F. W. & Killeen,N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science280, 905–908 (1998). ADSCASPubMed Google Scholar
Zerrahn,J., Held,W. & Raulet,D. H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell88, 627–636 (1997). CASPubMed Google Scholar
Sim,B. C., Zerva,L., Greene,M. I. & Gascoigne,N. R. J. Control of MHC restriction by TCR Valpha CDR1 and CDR2. Science273, 963–966 (1996). ADSCASPubMed Google Scholar
Sim,B. C. et al. Thymic skewing of the CD4/CD8 ratio maps with the T-cell receptor alphachain locus. Curr. Biol.8, 701–704 (1998). CASPubMed Google Scholar
van Meerwijk,J. P. M. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med.185, 377–383 (1997). CASPubMedPubMed Central Google Scholar
Robey,E. & Fowlkes,B. J. Selective events in T cell development. Annu. Rev. Immunol.12, 675–705 (1994). CASPubMed Google Scholar
Nikolic-Zugic,J. & Bevan,M. J. Role of self-peptides in positively selecting the T-cell repertoire. Nature344, 65–67 (1990). ADSCASPubMed Google Scholar
Sha,W. C. et al. Positive selection of transgenic receptor-bearing thymocytes by Kb antigen is altered by Kb mutations that involve peptide binding. Proc. Natl Acad. Sci.87, 6186–6190 (1990). ADSCASPubMedPubMed Central Google Scholar
Hogquist,K. A., Gavin,M. A. & Bevan,M. J. Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymic organ culture. J. Exp. Med.177, 1469–1473 (1993). CASPubMed Google Scholar
Ashton-Rickardt,P. G., Van Kaer,L., Schumacher,T. N., Ploegh,H. L. & Tonegawa,S. Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell73, 1041–1049 (1993). CASPubMed Google Scholar
Ashton-Rickardt,P. G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell76, 651–663 (1994). CASPubMed Google Scholar
Hogquist,K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell76, 17–27 (1994). CASPubMed Google Scholar
Sebzda,E. et al. Mature T cell reactivity altered by peptide agonist that induces positive selection. J. Exp. Med.183, 1093–1104 (1996). CASPubMed Google Scholar
Hogquist,K. A., Jameson,S. C. & Bevan,M. J. Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity3, 79–86 (1995). CASPubMed Google Scholar
Davis,M. M. et al. Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol.16, 523–544 (1998). ADSCASPubMed Google Scholar
Alam,S. M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature381, 558–559 (1996). Google Scholar
Hogquist,K. A. et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity7, 221–231 (1997). Google Scholar
Hu,Q. et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity7, 221–231 (1997). CASPubMed Google Scholar
Baldwin,K. K., Reay,P. A., Wu, L., Farr,A. & Davis,M. M. A T cell receptor-specific blockade of positive selection. J. Exp. Med.189, 13–24 (1999). CASPubMedPubMed Central Google Scholar
Kersh,G. J. & Allen,P. M. Essential flexibility in the T-cell recognition of antigen. Nature380, 495–498 (1996). ADSCASPubMed Google Scholar
Fung-Leung,W. P. et al. Antigen presentation and T cell development in H2-M-deficient mice. Science271, 1278–1281 (1996). ADSCASPubMed Google Scholar
Martin,W. D. et al. H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell84, 543–550 (1996). CASPubMed Google Scholar
Miyazaki,T. et al. Mice lacking H2-M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell84, 531–541 (1996). CASPubMed Google Scholar
Ignatowicz,L., Kappler,J. & Marrack,P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell84, 521–541 (1996). CASPubMed Google Scholar
Fukui,Y. et al. Positive and negative CD4+ thymocyte selection by a single MHC class II/peptide ligand affected by its expression level in the thymus. Immunity6, 401–410 (1997). CASPubMed Google Scholar
Grubin,C. E., Kovats,S., deRoos,P. & Rudensky,A. Y. Deficient positive selection of CD4 T cells in mice displaying altered repertoires of MHC class II-bound self-peptides. Immunity7, 197–208 (1997). CASPubMed Google Scholar
Tourne,S. et al. Selection of a broad repertoire of CD4+ T cells in H-2Ma0/0 mice. Immunity7, 187–195 (1997). CASPubMed Google Scholar
Surh,C. D., Lee,D. S., Fung-Leung,W. P., Karlsson,L. & Sprent,J. Thymic selection by a single MHC/peptide ligand produces a semidiverse repertoire of CD4+ T cells. Immunity7, 209–219 (1997). CASPubMed Google Scholar
Sant'Angelo,D. B. et al. The imprint of intrathymic self-peptides on the mature T cell receptor repertoire. Immunity7, 517–524 (1997). CASPubMed Google Scholar
Barton,G. M. & Rudensky,A. Y. Requirement for diverse, low-abundance peptides in positive selection of T cells. Science283, 67–70 (1999). ADSCASPubMed Google Scholar
Davey,G. M. et al. Preselection thymocytes are most sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med.188, 1867–1874 (1998). CASPubMedPubMed Central Google Scholar
Lucas,B., Stefanova,I., Yasutomo,K., Dautigny,N. & Germain,R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity10, 367–376 (1999). CASPubMed Google Scholar
Tanchot,C., Rosado,M. M., Agenes,F., Freitas,A. A. & Rocha,B. Lymphocyte homeostasis. Semin. Immunol.9, 331–337 (1997). CASPubMed Google Scholar
Mombaerts,P. et al. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature360, 225–231 (1992). ADSCASPubMed Google Scholar
Kitamura,D., Roes,J., Kuhn,R. & Rajewsky,K. A B-cell deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature350, 423–426 (1991). ADSCASPubMed Google Scholar
Bender,J., Mitchell,T., Kappler,J. & Marrack,P. CD4+ T cell division in irradiated mice requires peptides distinct from those responsible for thymic selection. J. Exp. Med.190, 367–374 (1999). CASPubMedPubMed Central Google Scholar
Tanchot,C. & Rocha,B. The peripheral T cell repertoire: independent homeostatic regulation of virgin and activated CD8+ T cell pools. Eur. J. Immunol.25, 2127–2136 (1995). CASPubMed Google Scholar
Rocha,B., Dautigny,N. & Pereira,P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur. J. Immunol.19, 905–911 (1989). CASPubMed Google Scholar
Ernst,B., Lee,D. Chang,J. M., Sprent,J. & Surh,C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity11, 173–181 (1999). CASPubMed Google Scholar
Berzins,S. P., Boyd,R. L. & Miller,J. F. A. P. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med.187, 1839–1848 (1998). CASPubMedPubMed Central Google Scholar
Tanchot,C. & Rocha,B. Peripheral selection of T cell repertoires: the role of continuous thymus output. J. Exp. Med.186, 1099–1106 (1997). CASPubMedPubMed Central Google Scholar
Bell,E. B., Sparshott,S. M., Drayson,M. T. & Ford,W. L. The stable and permanent expansion of functional T lymphocytes in athymic nude rats after a single injection of mature T cells. J. Immunol.139, 1379–1384 (1987). CASPubMed Google Scholar
Sprent,J. Lifespans of naive, memory and effector lymphocytes. Curr. Opin. Immunol.5, 433–438 (1993). CASPubMed Google Scholar
Sprent,J., Schaefer,M., Hurd,M., Surh,C. D. & Ron,Y. Mature murine B and T cells transferred to SCID mice can survive indefinitely and many maintain a virgin phenotype. J. Exp. Med.174, 717–728 (1991). CASPubMed Google Scholar
Tough,D. F & Sprent,J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med.179, 1127–1135 (1994). CASPubMed Google Scholar
von Boehmer,H. & Hafen,K. The life span of naive α/β T cells in secondary lymphoid organs. J. Exp. Med.177, 891–896 (1993). CASPubMed Google Scholar
Bruno,L., von Boehmer,H. & Kirberg,J. Cell division in the compartment of naive and memory T lymphocytes. Eur. J. Immunol.26, 3179–3184 (1996). CASPubMed Google Scholar
Kuo,C. T., Veselitis,M. L. & Leiden,J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science277, 1986–1990 (1997). CASPubMed Google Scholar
Oukka,M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity9, 295–304 (1998). CASPubMed Google Scholar
Lodolce,J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). CASPubMed Google Scholar
Nakajima,H., Shores,E. W., Noguchi,M. & Leonard,W. J. The common cytokine receptor γ chain plays an essential role in regulating lymphoid homeostasis. J. Exp. Med.185, 189–195 (1997). CASPubMedPubMed Central Google Scholar
Veis,D. J., Sorenson,C. M., Shutter,J. R. & Korsmeyer,S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell75, 229–240 (1993). CASPubMed Google Scholar
Freitas,A. A. & Rocha,B. Peripheral T cell survival. Curr. Opin. Immunol.11, 152–156 (1999). CASPubMed Google Scholar
Kirber,J., Berns,A. & von Boehmer,H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med.186, 1269–1275 (1997). Google Scholar
Takeda,S., Rodewald,H.-R., Arakawa,H., Bluethmann,H. & Shimizu,T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity5, 217–228 (1996). CASPubMed Google Scholar
Brocker,T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med.186, 1223–1232 (1997). CASPubMedPubMed Central Google Scholar
Rooke,R., Waltzinger,C., Benoist,C. & Mathis,D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity7, 123–134 (1997). CASPubMed Google Scholar
Tanchot,C., Lemonnier,F. A., Perarnau,B., Freitas,A. A. & Rocha,B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science276, 2057–2062 (1997). CASPubMed Google Scholar
Murali-Krishna,K. et al. Persistence of memory CD8 T cells in MHC class I deficient mice. Science (in the press).
Nesic,D. & Vukmanovic,S. MHC class I is required for peripheral accumulation of CD8+ thymic emigrants. J. Immunol.160, 3705–3712 (1998). CASPubMed Google Scholar
Bell,E. B., Sparshott,S. M., Drayson,M. T. & Hunt,S. V. The origin of T cells in permanently reconstituted old athymic nude rats. Analysis using chromosome or allotype markers. Immunology68, 547–556 (1989). CASPubMedPubMed Central Google Scholar
McDonagh,M. & Bell,E. B. The survival and turnover of mature and immature CD8 T cells. Immunology84, 514–520 (1995). CASPubMedPubMed Central Google Scholar
Pereira,P. & Rocha,B. Post-thymic in vivo expansion of mature αβ T cells. Int. Immunol.3, 1077–1080 (1991). CASPubMed Google Scholar
Oehen,S. & Brduscha-Riem,K. Naive cytotoxic T lymphocytes spontaneously acquire effector function in lymphocytopenic recipients: A pitfall for T cell memory studies? Eur. J. Immunol.29, 608–614 (1999). CASPubMed Google Scholar
Sprent,J., Surh,C. D. & Tough,D. Fate of T and B cells transferred to SCID mice. Res. Immunol.145, 328–331 (1994). CASPubMed Google Scholar
Bell,E. B. & Sparshott,S. M. The peripheral T-cell pool: regulation by non-antigen induced proliferation? Semin. Immunol.9, 347–353 (1997). CASPubMed Google Scholar
Mackall,C. L. et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J. Immunol.156, 4609–4616 (1996). CASPubMed Google Scholar
Viret,C., Wong,F. S. & Janeway,C. S. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity10, 559–568 (1999). CASPubMed Google Scholar
Beutner,U. & MacDonald,H. R. TCR–MHC class II interaction is required for peripheral expansion of CD4 cells in a T cell-deficient host. Int. Immun.10, 305–310 (1998). CASPubMed Google Scholar
Kieper,W. C. & Jameson,S. C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl Acad. Sci. USA (in the press).
Goldrath,A. W. & Bevan,M. J. Low affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity11, 183–190 (1999). CASPubMedPubMed Central Google Scholar
Markiewicz,M. A. et al. Long-term T cells memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proc. Natl Acad. Sic. USA95, 3065–3070 (1998). ADSCAS Google Scholar
Garcia,S., DiSanto,J. & Stockinger,B. Following the development of a CD4 T cell immune response in vivo: from activation to memory formation. Immunity11, 163–171 (1999). CASPubMed Google Scholar
Swain,S., Hui,H. & Huston,G. Class II-independent generation of CD4 memory T cells from effectors. Science (in the press).
Butz,E. A. & Bevan,M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity8, 167–175 (1998). CASPubMedPubMed Central Google Scholar
Murali-Krishna,K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177–187 (1998). CASPubMed Google Scholar
Busch,D. H., Pilip,I. M., Vijh,S. & Pamer,E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity8, 353–362 (1998). CASPubMed Google Scholar
Callan,M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo. J. Exp. Med.187, 1395–1402 (1998). CASPubMedPubMed Central Google Scholar
Cose,S. C., Jones,C. M., Wallace,M. E., Heath,W. R. & Carbone,F. R. Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. Eur. J. Immunol.27, 2310–2316 (1997). CASPubMed Google Scholar
Flynn,K. J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity8, 683–691 (1998). CASPubMed Google Scholar
Zimmermann,C. & Pircher,H. A novel approach to visualize polyclonal virus-specific CD8 T cells in vivo. J. Immunol.162, 5178–5182 (1999). CASPubMed Google Scholar
Busch,D. H., Pilip,I. & Pamer,E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med.188, 61–70 (1998). CASPubMedPubMed Central Google Scholar
Jacob,J. & Baltimore,D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature399, 593–597 (1999). ADSCASPubMed Google Scholar
Razvi,E. S., Jiang,Z., Woda,B. A. & Welsh,R. M. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, Ipr, and Bcl-2-transgenic mice. Am. J. Pathol.147, 79–91 (1995). CASPubMedPubMed Central Google Scholar
Sallusto,F., Lenig,D., Förster,R., Lipp,M. & Lanzavecchia,A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ADSCASPubMed Google Scholar