The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes (original) (raw)

Nature volume 402, pages 404–407 (1999)Cite this article

An Erratum to this article was published on 04 May 2000

Abstract

Angiosperms have dominated the Earth's vegetation since the mid-Cretaceous (90 million years ago)1, providing much of our food, fibre, medicine and timber, yet their origin and early evolution have remained enigmatic for over a century2,3,4,5,6,7,8. One part of the enigma lies in the difficulty of identifying the earliest angiosperms; the other involves the uncertainty regarding the sister group of angiosperms among extant and fossil gymnosperms. Here we report a phylogenetic analysis of DNA sequences of five mitochondrial, plastid and nuclear genes (total aligned length 8,733 base pairs), from all basal angiosperm and gymnosperm lineages (105 species, 103 genera and 63 families). Our study demonstrates that Amborella, Nymphaeales and Illiciales-Trimeniaceae-Austrobaileya represent the first stage of angiosperm evolution, with Amborella being sister to all other angiosperms. We also show that Gnetales are related to the conifers and are not sister to the angiosperms, thus refuting the Anthophyte Hypothesis1. These results have far-reaching implications for our understanding of diversification, adaptation, genome evolution and development of the angiosperms.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Crane,P. R., Friis,E. M. & Pedersen,K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995).
    Article ADS CAS Google Scholar
  2. Darwin,C. in More Letters of Charles Darwin: A Record of His Work in a Series of Hitherto Unpublished Letters Vol. 2 (eds Darwin, F. & Seward, A. C.) 20–22, 26–27 (John Murray, London, 1903).
    Google Scholar
  3. Arber,E. A. N. & Parkin,J. On the origin of angiosperms. Bot. J. Linnean Soc. 38, 29–80 (1907).
    Article Google Scholar
  4. von Wettstein,R. R. Handbuck der Systematischen Botanik. II. Band (Franz Deuticke, Wien, 1907).
    Google Scholar
  5. Takhtajan,A. Flowering Plants: Origin and Dispersal (Oliver and Boyd, Edinburgh, 1969).
    Google Scholar
  6. Doyle,J. A. Origin of angiosperms. Annu. Rev. Ecol. Syst. 9, 365–392 (1978).
    Article Google Scholar
  7. Endress,P. K. Reproductive structures and phylogenetic significance of extant primitive angiosperms. Pl. Syst. Evol. 152, 1–28 (1986).
    Article Google Scholar
  8. Cronquist,A. The Evolution and Classification of Flowering Plants 2nd edn (The New York Botanical Garden, New York, 1988).
    Google Scholar
  9. Donoghue,M. J. & Doyle,J. A. in Evolution, Systematics, and Fossil History of the Hamamelidae Vol. 1 (eds Crane, P. R. & Blackmore, S.) 17–45 (Clarendon, Oxford, 1989).
    Google Scholar
  10. Doyle,J. A. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor. 50, 1–35 (1969).
    Article Google Scholar
  11. Walker,J. W. & Walker,A. G. Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard. 71, 464–521 (1984).
    Article Google Scholar
  12. Friis,E. M., Pedersen,K. R. & Crane,P. R. Angiosperm floral structures from the Early Cretaceous of Portugal. Pl. Syst. Evol. (Suppl.) 8, 31–49 (1994).
    Google Scholar
  13. Friis,E. M., Pedersen,K. R. & Crane,P. R. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Missouri Bot. Gard. 86, 259–296 (1999).
    Article Google Scholar
  14. Walker,J. W., Brenner,G. J. & Walker,A. G. Winteraceous pollen in the lower Cretaceous of Israel: early evidence of a magnolialean angiosperm family. Science 220, 1273–1275 (1983).
    Article ADS CAS Google Scholar
  15. Taylor,D. W. & Hickey,L. J. An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247, 702–704 (1990).
    Article ADS CAS Google Scholar
  16. Sun,G., Dilcher,D. L., Zheng,S. & Zhou,Z. In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282, 1692–1695 (1998).
    Article ADS CAS Google Scholar
  17. Martin,P. G. & Dowd,J. M. Studies of angiosperm phylogeny using protein sequences. Ann. Missouri Bot. Gard. 78, 296–337 (1991).
    Article Google Scholar
  18. Hamby,R. K. & Zimmer,E. A. in Molecular Systematics of Plants (eds Soltis, P. S., Soltis, D. E. & Doyle, J. J.) 50–91 (Chapman and Hall, New York, 1992).
    Book Google Scholar
  19. Soltis,D. E. et al. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard. 84, 1–49 (1997).
    Article Google Scholar
  20. Chase,M. W. et al. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80, 528–580 (1993).
    Article Google Scholar
  21. Qiu,Y.-L., Chase,M. W., Les,D. H. & Parks,C. R. Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann. Missouri Bot. Gard. 80, 587–606 (1993).
    Article Google Scholar
  22. Hillis,D. M. Inferring complex phylogenies. Nature 383, 130–131 (1996).
    Article ADS CAS Google Scholar
  23. Graybeal,A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998).
    Article CAS Google Scholar
  24. Soltis,D. E. et al. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol. 47, 32–42 (1998).
    Article CAS Google Scholar
  25. Qiu,Y.-L. & Palmer,J. D. Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci. 4, 26–30 (1999).
    Article CAS Google Scholar
  26. Naylor,G. J. P. & Brown,W. M. Structural biology and phylogenetic estimation. Nature 388, 527–528 (1997).
    Article ADS CAS Google Scholar
  27. Soltis,P. S., Soltis,D. E. & Chase,M. W. Angiosperm phylogeny inferred from multiple genes as a research tool for comparative biology. Nature 402 402–404 (1999).
    Article ADS CAS Google Scholar
  28. Mathews,S. & Donoghue,M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).
    Article CAS Google Scholar
  29. Endress,P. K. & Igersheim,A. Gynoecium diversity and systematics of the Laurales. Bot. J. Linnean Soc. 125, 93–168 (1997).
    Article Google Scholar
  30. Swofford,D. L. PAUP*4.0b2: Phylogenetic Analysis Using Parsimony. (Sinauer, Sunderland, Massachusetts, 1998).
    Google Scholar
  31. Parkinson,C. L., Adams,K. L. & Palmer,J. D. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. (in the press).

Download references

Acknowledgements

We thank C. D. K. Cook, M. E. Endress, P. K. Endress, E. M. Friis, O. Nandi and R. Rutishauser for critical reading of the manuscript, R. Collett, A. Floyd, B. Hall and S. S. Renner for plant material, and the Swiss NF and US NSF for financial support.

Author information

Authors and Affiliations

  1. Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
    Yin-Long Qiu, Jungho Lee, Fabiana Bernasconi-Quadroni & Zhiduan Chen
  2. School of Biological Sciences, Washington State University, Pullman, 99164-4236, Washington, USA
    Douglas E. Soltis, Pamela S. Soltis & Michael Zanis
  3. Laboratory of Molecular Systematics, Smithsonian Institution, 20560, Washington DC, USA
    Elizabeth A. Zimmer
  4. Jodrell Laboratory Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
    Vincent Savolainen & Mark W. Chase
  5. Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
    Zhiduan Chen

Authors

  1. Yin-Long Qiu
    You can also search for this author inPubMed Google Scholar
  2. Jungho Lee
    You can also search for this author inPubMed Google Scholar
  3. Fabiana Bernasconi-Quadroni
    You can also search for this author inPubMed Google Scholar
  4. Douglas E. Soltis
    You can also search for this author inPubMed Google Scholar
  5. Pamela S. Soltis
    You can also search for this author inPubMed Google Scholar
  6. Michael Zanis
    You can also search for this author inPubMed Google Scholar
  7. Elizabeth A. Zimmer
    You can also search for this author inPubMed Google Scholar
  8. Zhiduan Chen
    You can also search for this author inPubMed Google Scholar
  9. Vincent Savolainen
    You can also search for this author inPubMed Google Scholar
  10. Mark W. Chase
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYin-Long Qiu.

Supplementary information

Rights and permissions

About this article

Cite this article

Qiu, YL., Lee, J., Bernasconi-Quadroni, F. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes.Nature 402, 404–407 (1999). https://doi.org/10.1038/46536

Download citation

This article is cited by