The language of covalent histone modifications (original) (raw)
Luger,K. & Richmond,T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev.8, 140–146 (1998). ArticleCASPubMed Google Scholar
Kornberg,R. D. & Lorch,Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell98, 285–294 (1999). CASPubMed Google Scholar
van Holde,K. E. in Chromatin (ed. Rich, A.) 111–148 (Springer, New York, 1988). Google Scholar
Hecht,A., Laroche,T., Strahl-Bolsinger,S., Gasser,S. M. & Grunstein,M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell80, 583–592 (1995). ArticleCASPubMed Google Scholar
Edmondson,D. G., Smith,M. M. & Roth,S. Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev.10, 1247–1259 (1996). ArticleCASPubMed Google Scholar
Luger,K., Mader,A. W., Richmond,R. K., Sargent,D. F. & Richmond,T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleADSCASPubMed Google Scholar
Hansen,J. C., Tse,C. & Wolffe,A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry37, 17637–17641 (1998). ArticleCASPubMed Google Scholar
Mizzen,C. et al. Signaling to chromatin through histone modifications: how clear is the signal? Cold Spring Harb. Symp. Quant. Biol.63, 469–481 (1998). ArticleCASPubMed Google Scholar
Lopez-Rodas,G. et al. Histone deacetylase. A key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett.317, 175–180 (1993). ArticleCASPubMed Google Scholar
Tordera,V., Sendra,R. & Perez-Ortin,J. E. The role of histones and their modifications in the informative content of chromatin. Experientia49, 780–788 (1993). ArticleCASPubMed Google Scholar
Grunstein,M. Histone acetylation in chromatin structure and transcription. Nature389, 349–352 (1997). ArticleADSCASPubMed Google Scholar
Struhl,K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev.12, 599–606 (1998). ArticleCASPubMed Google Scholar
Thorne,A. W., Kmiciek,D., Mitchelson,K., Sautiere,P. & Crane-Robinson,C. Patterns of histone acetylation. Eur. J. Biochem.193, 701–713 (1990). ArticleCASPubMed Google Scholar
Kuo,M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature383, 269–272 (1996). ArticleADSCASPubMed Google Scholar
Grant,P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem.274, 5895–5900 (1999). ArticleCASPubMed Google Scholar
Zhang,W., Bone,J. R., Edmondson,D. G., Turner,B. M. & Roth,S. Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J.17, 3155–3167 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rojas,J. R. et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature401, 93–98 (1999). ArticleADSCASPubMed Google Scholar
Tanner,K. G. et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem.274, 18157–18160 (1999). ArticleCASPubMed Google Scholar
Trievel,R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA96, 8931–8936 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Clements,A. et al. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J.18, 3521–3532 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lin,Y., Fletcher,C. M., Zhou,J., Allis,C. D. & Wagner,G. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature400, 86–89 (1999). ArticleADSCASPubMed Google Scholar
Sternglanz,R. & Schindelin,H. Structure and mechanism of action of the histone acetyltransferase gcn5 and similarity to other _N_-acetyltransferases. Proc. Natl Acad. Sci. USA96, 8807–8808 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Kimura,A. & Horikoshi,M. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett.431, 131–133 (1998). ArticleCASPubMed Google Scholar
Turner,B. M. & O'Neill,L. P. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol.6, 229–236 (1995). ArticleCASPubMed Google Scholar
Annunziato,A. T. in The Nucleus (ed. Wolffe, A. P.) 31–56 (JAI, Greenwich, Connecticut, 1995). Book Google Scholar
Allis,C. D., Chicoine,L. G., Richman,R. & Schulman,I. G. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc. Natl Acad. Sci. USA82, 8048–8052 (1985). ArticleADSCASPubMedPubMed Central Google Scholar
Sobel,R. E., Cook,R. G., Perry,C. A., Annunziato,A. T. & Allis,C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA92, 1237–1241 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Tyler,J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature402, 555–560 (1999). ArticleADSCASPubMed Google Scholar
Bradbury,E. M. Reversible histone modifications and the chromosome cell cycle. Bioessays14, 9–16 (1992). ArticleCASPubMed Google Scholar
Mahadevan,L. C., Willis,A. C. & Barratt,M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell65, 775–783 (1991). ArticleCASPubMed Google Scholar
Thomson,S., Mahadevan,L. C. & Clayton,A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell Dev. Biol.10, 205–214 (1999). ArticleCASPubMed Google Scholar
Chadee,D. N. et al. Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem.274, 24914–24920 (1999). ArticleCASPubMed Google Scholar
Sassone-Corsi,P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science285, 886–891 (1999). ArticleCASPubMed Google Scholar
De Cesare,D., Jacquot,S., Hanauer,A. & Sassone-Corsi,P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl Acad. Sci. USA95, 12202–12207 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Thomson,S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J.18, 4779–4793 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jin,Y. et al. JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell4, 129–135 (1999). ArticleCASPubMed Google Scholar
Lucchesi,J. C. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev.8, 179–184 (1998). ArticleCASPubMed Google Scholar
Turner,B. M., Birley,A. J. & Lavender,J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell69, 375–384 (1992). ArticleCASPubMed Google Scholar
von Holt,C. et al. Isolation and characterization of histones. Methods Enzymol.170, 431–523 (1989). ArticleCASPubMed Google Scholar
Strahl,B. D., Ohba,R., Cook,R. G. & Allis,C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA96, 14967–14972 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Chen,D. et al. Regulation of transcription by a protein methyltransferase. Science284, 2174–2177 (1999). ArticleCASPubMed Google Scholar
Nakajima,T. et al. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell86, 465–474 (1996). ArticleCASPubMed Google Scholar
Berger,S. L. Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol.11, 336–341 (1999). ArticleCASPubMed Google Scholar
Cosma,M. P., Tanaka,T. & Nasmyth,K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell97, 299–311 (1999). ArticleCASPubMed Google Scholar
Krebs,J. E., Kuo,M. H., Allis,C. D. & Peterson,C. L. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev.13, 1412–1421 (1999). ArticleCASPubMedPubMed Central Google Scholar
Clark,D. et al. Chromatin structure of transcriptionally active genes. Cold Spring Harb. Symp. Quant. Biol.58, 1–6 (1993). ArticleCASPubMed Google Scholar
Roth,S. Y. & Allis,C. D. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem. Sci.17, 93–98 (1992). ArticleCASPubMed Google Scholar
Barratt,M. J., Hazzalin,C. A., Cano,E. & Mahadevan,L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA91, 4781–4785 (1994). ArticleADSCASPubMedPubMed Central Google Scholar
Hendzel,M. J. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma106, 348–360 (1997). ArticleCASPubMed Google Scholar
Wei,Y., Yu,L., Bowen,J., Gorovsky,M. A. & Allis,C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell97, 99–109 (1999). ArticleCASPubMed Google Scholar
Goto,H. et al. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem.274, 25543–25549 (1999). ArticleCASPubMed Google Scholar
Sullivan,K. F., Hechenberger,M. & Masri,K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol.127, 581–592 (1994). ArticleCASPubMed Google Scholar
Hirano,T. SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev.13, 11–19 (1999). ArticleCASPubMed Google Scholar
De Rubertis,F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature384, 589–591 (1996). ArticleADSCASPubMed Google Scholar
Braunstein,M., Sobel,R. E., Allis,C. D., Turner,B. M. & Broach,J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol.16, 4349–4356 (1996). ArticleCASPubMedPubMed Central Google Scholar
Dhalluin,C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature399, 491–496 (1999). ArticleADSCASPubMed Google Scholar
Winston,F. & Allis,C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol.6, 601–604 (1999). ArticleCASPubMed Google Scholar
Roberts,S. M. & Winston,F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics147, 451–465 (1997). CASPubMedPubMed Central Google Scholar
Sudarsanam,P., Cao,Y., Wu,L., Laurent,B. C. & Winston,F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J.18, 3101–3106 (1999). ArticleCASPubMedPubMed Central Google Scholar
Luduena,R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol.178, 207–275 (1998). ArticleCASPubMed Google Scholar
Luduena,R. F., Banerjee,A. & Khan,I. A. Tubulin structure and biochemistry. Curr. Opin. Cell Biol.4, 53–57 (1992). ArticleCASPubMed Google Scholar
Nogales,E., Whittaker,M., Milligan,R. A. & Downing,K. H. High-resolution model of the microtubule. Cell96, 79–88 (1999). ArticleCASPubMed Google Scholar