Structural and mechanistic basis of immunity toward endonuclease colicins (original) (raw)

References

  1. James, R., Lazdunski, C. & Pattus, F (eds.) Bacteriocins, microcins and lantibiotics, NATO ASI Series H (Springer, Heidelberg; 1992).
    Book Google Scholar
  2. James, R., Kleanthous, C. & Moore, G.R. The biology of E colicins: paradigms and paradoxes. Microbiology 142, 1569– 1580 (1996).
    Article CAS Google Scholar
  3. Di Masi, D.R., White, D.C., Schnaitman, C.A. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli; common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115, 506–513 (1973).
    CAS PubMed PubMed Central Google Scholar
  4. Lazdunski, C., Bouveret, E., Rigal, A., Journet, L., Lloubès, R. & Bénédetti, H. Colicin import into Escherichia coli cells. J. Bacteriol. 180, 4993–5002 (1998).
    CAS PubMed PubMed Central Google Scholar
  5. Cramer, W.A. & Stauffacher, C.V. Structure–function of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct . 24, 611–641 ( 1995).
    Article CAS Google Scholar
  6. Senior, B.W. & Holland, I.B. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc. Natl. Acad. Sci. USA 68, 959–963 ( 1971).
    Article CAS Google Scholar
  7. Schaller, K. & Nomura, M. Colicin E2 is a DNA endonuclease. Proc. Natl. Acad. Sci. USA 73, 3989– 3993 (1976).
    Article CAS Google Scholar
  8. Wiener, M.C., Freyman, D.M., Glosh, P. & Stroud, R.M. The crystal structure of colicin Ia. Nature 385, 461– 464 (1997).
    Article CAS Google Scholar
  9. Bénédetti, H., Lloubès, R., Lazdunski, C. & Letellier, L. Colicin A unfolds during its translocation into Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J. 11, 441–447 ( 1992).
    Article Google Scholar
  10. Jakes, K. & Zinder, N. D. Highly purified colicin E3 contains immunity protein. Proc. Natl. Acad. Sci. USA 71, 3380–3384 (1974).
    Article CAS Google Scholar
  11. Wallis, R., Reilly, A., Rowe, A., Moore, G., James, R. & Kleanthous, C. In vivo and in vitro characterisation of overproduced colicin E9 immunity protein. Eur. J. Biochem. 207, 687– 695 (1992).
    Article CAS Google Scholar
  12. Kleanthous, C., Hemmings, A.M., Moore, G.R. & James, R. Immunity proteins and their specificity for endonuclease colicins: Telling right from wrong in protein–protein recognition. Mol. Microbiol . 28, 227–233 ( 1998).
    Article CAS Google Scholar
  13. Wallis, R., Moore, G.R., James, R. & Kleanthous, C. Protein–protein interactions in colicin E9 DNase–immunity protein complexes. Diffusion controlled association and femtomolar binding for the cognate complex. Biochemistry 34, 13743–13750 (1995).
    Article CAS Google Scholar
  14. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor-2. Evidence for a 2-state transition. Biochemistry 30, 10428–10435 (1991).
    Article CAS Google Scholar
  15. Jackson, S.E. How do small single-domain proteins fold? Folding & Design 3, R81–R91 ( 1998).
    Article CAS Google Scholar
  16. Wallis, R., Reilly, A., Barnes, K., Abell, C., Campbell, D.G., Moore, G.R., James, R. & Kleanthous, C. Tandem overproduction and characterisation of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9. Eur. J. Biochem. 220, 447–454 (1994).
    Article CAS Google Scholar
  17. Garinot-Schneider, C., Pommer, A.J., Moore, G.R., Kleanthous, C. & James, R. Identification of putative active site residues in the DNase domain of colicin E9 by random mutagenesis. J. Mol. Biol. 260, 731–742 (1996).
    Article CAS Google Scholar
  18. Kühlmann, U.C., Kleanthous, C., James, R., Moore, G.R. & Hemmings, A.M. Preliminary crystallographic analysis of the complex between the DNase domain of colicin E9 and its cognate immunity protein. Acta Crystallogr. D 55, 256–259 (1999).
    Article Google Scholar
  19. Osborne, M. J., Breeze, A. L., Lian, L-Y., Reilly, A., James, R., Kleanthous, C. & Moore, G. R. Three-dimensional solution structure and 13C NMR asignments of the colicin E9 immunity protein Im9. Biochemistry 35, 9505–9512 (1996).
    Article CAS Google Scholar
  20. Chak, K-F., Safo, M.K., Ku, W-Y, Hsieh, S-Y & Yuan, H. The crystal-structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc. Natl. Acad. Sci. U.S.A. 93, 6437–6442 (1996).
    Article CAS Google Scholar
  21. Dennis, C.A., Videler, H., Pauptit, R.A., Wallis, R., James, R., Moore, G.R. & Kleanthous, C. A structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity protein specificity. Biochem. J. 333, 183–191 (1998).
    Article CAS Google Scholar
  22. Wallis, R., Leung, K-Y., Osborne, M. J., James, R., Moore, G.R. & Kleanthous, C. Specificity in protein–protein recognition: Conserved Im9 residues are the major determinants of stability in the colicin E9 DNase–Im9 complex. Biochemistry 37, 476– 485 (1998).
    Article CAS Google Scholar
  23. Li, W., Hamill, S.J., Hemmings, A.M., Moore, G.R., James, R. & Kleanthous, C. Dual recognition and the role of specificity-determining residues in colicin E9 DNase–immunity protein interactions. Biochemistry 37, 11771–11779 (1998).
    Article CAS Google Scholar
  24. Holm, L. & Sander, C. Protein-structure comparison by alignment of distance matrices J. Mol. Biol. 233, 123–138 (1993).
    Article CAS Google Scholar
  25. Janin, J. Elusive affinities. Proteins 21, 30– 39 (1995).
    Article CAS Google Scholar
  26. Osborne, M.J., Wallis, R., Leung, K-Y., William, G., Lian, L-Y., James, R., Kleanthous, C. & Moore, G.R. Identification of critical residues in the colicin E9 DNase binding region of the Im9 protein. Biochem. J. 323, 823 –831 (1997).
    Article CAS Google Scholar
  27. Li, W., Dennis, C.A., Moore, G.R., James, R. & Kleanthous, C. Protein–protein interaction specificity of Im9 for the endonuclease toxin colicin E9 defined by homologue scanning mutagenesis, J. Biol. Chem. 272, 22253–22258 (1997).
    Article CAS Google Scholar
  28. Curtis, M.D. & James, R. Investigation of the specificity of the interaction between colicin E9 and its immunity protein by site-directed mutagenesis. Mol. Microbiol. 11, 2727– 2733 (1991).
    Article Google Scholar
  29. Janin, J. & Chothia, C. The structure of protein–protein recognition sites. J. Biol. Chem. 265, 16027 –16030 (1990).
    CAS PubMed Google Scholar
  30. Pommer, A.J., Wallis, R., Moore, R., James, R. & Kleanthous, C. Enzymological characterisation of the nuclease domain from the bacterial toxin colicin E9. Biochem. J. 334 , 387–392 (1998).
    Article CAS Google Scholar
  31. Orpen, A.G., Brammer, L., Allen, F.H., Kennard, O., Watson, D.G. & Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. 2. Organometallic compounds and co-ordination complexes of the D-block and F-block metals. J. Chem. Soc. Dalton Trans. S1–S83 (1989).
  32. Shub, D.A., Goodrich-Blair, H. & Eddy, S.R. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends. Biochem. Sci. 19, 402–404 (1994).
    Article CAS Google Scholar
  33. Mueller, J.E., Bryk, M., Loizos, N. & Belfort, M. in Nucleases 2nd edn (eds. Linn, S.M., Lloyd, R.S. & Roberts, R.J.) 111– 143 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; (1993).
    Google Scholar
  34. Belfort, M. & Roberts, R.J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25, 3379–3388 (1997).
    Article CAS Google Scholar
  35. Duan, X.Q., Gimble, F.S. & Quiocho, F.A. Crystal structure of PI-_Sce_I, a homing endonuclease with protein splicing activity. Cell 89, 555–564 (1997).
    Article CAS Google Scholar
  36. Flick, K.E., Jurica, M.S., Monnat Jr, R.J. & Stoddard, B.L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-_Ppo_I. Nature 394, 96–101 (1998).
    Article CAS Google Scholar
  37. Derbyshire, V., Kowalski, J.C., Dansereau, J.T., Hauer, C.R. & Belfort, M. Two-domain structure of the td intron-encoded endonuclease I-_Tev_I correlates with the two-domain configuration of the homing site. J. Mol. Biol. 265 , 494–506 (1997).
    Article CAS Google Scholar
  38. Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interactions with proteinases. Eur. J. Biochem. 204, 433–451 (1992).
    Article CAS Google Scholar
  39. Guillet, V., Lapthorn, A., Hartley, R.W. & Mauguen, Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1, 165– 176 (1993).
    Article CAS Google Scholar
  40. Kobe, B. & Deisenhofer, J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186 (1995).
    Article CAS Google Scholar
  41. Knighton, D.R., Zheng, J.H., Teneyck, L.F., Ashford, V.A., Xuong, N.H., Taylor, S.S. & Sowadski, J.M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine-monophosphate dependent protein-kinase. Science 253 414–420 (1991).
    Article CAS Google Scholar
  42. Mol, C.D., Arvai, A.S., Sanderson, R.J., Slupphaug, G., Kavli, B., Krokan, H.E., Mosbaugh, D.W. & Tainer, J.A. Crystal-structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 ( 1995).
    Article CAS Google Scholar
  43. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin–DNase I complex. Nature 347, 37–44 ( 1990).
    Article CAS Google Scholar
  44. Whittaker, S. B-M., Boetzel, R., MacDonald, C., Lian, L-Y., Pommer, A.J., Reilly, A., James, R., Kleanthous, C. & Moore, G.R. NMR detection of slow conformational dynamics in an endonuclease toxin. J. Biol. NMR 12, 145–159 (1998).
    Article CAS Google Scholar
  45. Russo, A.A., Tong, L., Lee, J-O., Jeffrey, P.D. & Pavletich, N.P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16 (INK4a). Nature 395, 237–243 (1998).
    Article CAS Google Scholar
  46. Dalgaard, J.Z., Klar, A.J., Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, I.S. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res. 25, 4626–4638 (1997).
    Article CAS Google Scholar
  47. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. & Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43– 50 (1998).
    Article CAS Google Scholar
  48. Santoro, D.W. & Bolen, M.M. Unfolding free energy changes determined by the linear extrapolation method: unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988).
    Article CAS Google Scholar
  49. Johnson, C.M. & Fersht, A. R. Protein stability as a function of denaturant concentration -the thermal-stability of barnase in the presence of urea. Biochemistry 34, 6795– 6804 (1995).
    Article CAS Google Scholar
  50. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307–326 (1996).
    Article Google Scholar
  51. Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for large structures. Acta Crystallogr. A 46, 467–473 (1990).
    Article Google Scholar
  52. De la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enz. 276, 472–494 (1997).
    Article CAS Google Scholar
  53. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structural determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30– 42 (1996).
    Article CAS Google Scholar
  54. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  55. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).
    Article Google Scholar
  56. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 475 (1992).
    Article Google Scholar
  57. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240– 255 (1997).
    Article CAS Google Scholar
  58. Navaza, J. AMoRe: an automated molecular replacement program package. Acta Crystallogr. A 50, 157–163 (1994).
    Article Google Scholar
  59. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140 –149 (1986).
    Article Google Scholar
  60. Laskowski, R.A., MacArthur, M.W., Moss, D. & Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 292 (1993).
    Article CAS Google Scholar

Download references