Structural and mechanistic basis of immunity toward endonuclease colicins (original) (raw)
References
James, R., Lazdunski, C. & Pattus, F (eds.) Bacteriocins, microcins and lantibiotics, NATO ASI Series H (Springer, Heidelberg; 1992). Book Google Scholar
James, R., Kleanthous, C. & Moore, G.R. The biology of E colicins: paradigms and paradoxes. Microbiology142, 1569– 1580 (1996). ArticleCAS Google Scholar
Di Masi, D.R., White, D.C., Schnaitman, C.A. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli; common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol.115, 506–513 (1973). CASPubMedPubMed Central Google Scholar
Lazdunski, C., Bouveret, E., Rigal, A., Journet, L., Lloubès, R. & Bénédetti, H. Colicin import into Escherichia coli cells. J. Bacteriol.180, 4993–5002 (1998). CASPubMedPubMed Central Google Scholar
Cramer, W.A. & Stauffacher, C.V. Structure–function of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct . 24, 611–641 ( 1995). ArticleCAS Google Scholar
Senior, B.W. & Holland, I.B. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc. Natl. Acad. Sci. USA68, 959–963 ( 1971). ArticleCAS Google Scholar
Schaller, K. & Nomura, M. Colicin E2 is a DNA endonuclease. Proc. Natl. Acad. Sci. USA73, 3989– 3993 (1976). ArticleCAS Google Scholar
Wiener, M.C., Freyman, D.M., Glosh, P. & Stroud, R.M. The crystal structure of colicin Ia. Nature385, 461– 464 (1997). ArticleCAS Google Scholar
Bénédetti, H., Lloubès, R., Lazdunski, C. & Letellier, L. Colicin A unfolds during its translocation into Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J.11, 441–447 ( 1992). Article Google Scholar
Jakes, K. & Zinder, N. D. Highly purified colicin E3 contains immunity protein. Proc. Natl. Acad. Sci. USA71, 3380–3384 (1974). ArticleCAS Google Scholar
Wallis, R., Reilly, A., Rowe, A., Moore, G., James, R. & Kleanthous, C. In vivo and in vitro characterisation of overproduced colicin E9 immunity protein. Eur. J. Biochem. 207, 687– 695 (1992). ArticleCAS Google Scholar
Kleanthous, C., Hemmings, A.M., Moore, G.R. & James, R. Immunity proteins and their specificity for endonuclease colicins: Telling right from wrong in protein–protein recognition. Mol. Microbiol . 28, 227–233 ( 1998). ArticleCAS Google Scholar
Wallis, R., Moore, G.R., James, R. & Kleanthous, C. Protein–protein interactions in colicin E9 DNase–immunity protein complexes. Diffusion controlled association and femtomolar binding for the cognate complex. Biochemistry34, 13743–13750 (1995). ArticleCAS Google Scholar
Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor-2. Evidence for a 2-state transition. Biochemistry30, 10428–10435 (1991). ArticleCAS Google Scholar
Jackson, S.E. How do small single-domain proteins fold? Folding & Design3, R81–R91 ( 1998). ArticleCAS Google Scholar
Wallis, R., Reilly, A., Barnes, K., Abell, C., Campbell, D.G., Moore, G.R., James, R. & Kleanthous, C. Tandem overproduction and characterisation of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9. Eur. J. Biochem.220, 447–454 (1994). ArticleCAS Google Scholar
Garinot-Schneider, C., Pommer, A.J., Moore, G.R., Kleanthous, C. & James, R. Identification of putative active site residues in the DNase domain of colicin E9 by random mutagenesis. J. Mol. Biol.260, 731–742 (1996). ArticleCAS Google Scholar
Kühlmann, U.C., Kleanthous, C., James, R., Moore, G.R. & Hemmings, A.M. Preliminary crystallographic analysis of the complex between the DNase domain of colicin E9 and its cognate immunity protein. Acta Crystallogr. D55, 256–259 (1999). Article Google Scholar
Osborne, M. J., Breeze, A. L., Lian, L-Y., Reilly, A., James, R., Kleanthous, C. & Moore, G. R. Three-dimensional solution structure and 13C NMR asignments of the colicin E9 immunity protein Im9. Biochemistry35, 9505–9512 (1996). ArticleCAS Google Scholar
Chak, K-F., Safo, M.K., Ku, W-Y, Hsieh, S-Y & Yuan, H. The crystal-structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc. Natl. Acad. Sci. U.S.A. 93, 6437–6442 (1996). ArticleCAS Google Scholar
Dennis, C.A., Videler, H., Pauptit, R.A., Wallis, R., James, R., Moore, G.R. & Kleanthous, C. A structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity protein specificity. Biochem. J. 333, 183–191 (1998). ArticleCAS Google Scholar
Wallis, R., Leung, K-Y., Osborne, M. J., James, R., Moore, G.R. & Kleanthous, C. Specificity in protein–protein recognition: Conserved Im9 residues are the major determinants of stability in the colicin E9 DNase–Im9 complex. Biochemistry37, 476– 485 (1998). ArticleCAS Google Scholar
Li, W., Hamill, S.J., Hemmings, A.M., Moore, G.R., James, R. & Kleanthous, C. Dual recognition and the role of specificity-determining residues in colicin E9 DNase–immunity protein interactions. Biochemistry37, 11771–11779 (1998). ArticleCAS Google Scholar
Holm, L. & Sander, C. Protein-structure comparison by alignment of distance matrices J. Mol. Biol. 233, 123–138 (1993). ArticleCAS Google Scholar
Osborne, M.J., Wallis, R., Leung, K-Y., William, G., Lian, L-Y., James, R., Kleanthous, C. & Moore, G.R. Identification of critical residues in the colicin E9 DNase binding region of the Im9 protein. Biochem. J. 323, 823 –831 (1997). ArticleCAS Google Scholar
Li, W., Dennis, C.A., Moore, G.R., James, R. & Kleanthous, C. Protein–protein interaction specificity of Im9 for the endonuclease toxin colicin E9 defined by homologue scanning mutagenesis, J. Biol. Chem. 272, 22253–22258 (1997). ArticleCAS Google Scholar
Curtis, M.D. & James, R. Investigation of the specificity of the interaction between colicin E9 and its immunity protein by site-directed mutagenesis. Mol. Microbiol. 11, 2727– 2733 (1991). Article Google Scholar
Janin, J. & Chothia, C. The structure of protein–protein recognition sites. J. Biol. Chem. 265, 16027 –16030 (1990). CASPubMed Google Scholar
Pommer, A.J., Wallis, R., Moore, R., James, R. & Kleanthous, C. Enzymological characterisation of the nuclease domain from the bacterial toxin colicin E9. Biochem. J. 334 , 387–392 (1998). ArticleCAS Google Scholar
Orpen, A.G., Brammer, L., Allen, F.H., Kennard, O., Watson, D.G. & Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. 2. Organometallic compounds and co-ordination complexes of the D-block and F-block metals. J. Chem. Soc. Dalton Trans. S1–S83 (1989).
Shub, D.A., Goodrich-Blair, H. & Eddy, S.R. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends. Biochem. Sci. 19, 402–404 (1994). ArticleCAS Google Scholar
Mueller, J.E., Bryk, M., Loizos, N. & Belfort, M. in Nucleases 2nd edn (eds. Linn, S.M., Lloyd, R.S. & Roberts, R.J.) 111– 143 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; (1993). Google Scholar
Belfort, M. & Roberts, R.J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25, 3379–3388 (1997). ArticleCAS Google Scholar
Duan, X.Q., Gimble, F.S. & Quiocho, F.A. Crystal structure of PI-_Sce_I, a homing endonuclease with protein splicing activity. Cell89, 555–564 (1997). ArticleCAS Google Scholar
Flick, K.E., Jurica, M.S., Monnat Jr, R.J. & Stoddard, B.L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-_Ppo_I. Nature394, 96–101 (1998). ArticleCAS Google Scholar
Derbyshire, V., Kowalski, J.C., Dansereau, J.T., Hauer, C.R. & Belfort, M. Two-domain structure of the td intron-encoded endonuclease I-_Tev_I correlates with the two-domain configuration of the homing site. J. Mol. Biol. 265 , 494–506 (1997). ArticleCAS Google Scholar
Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interactions with proteinases. Eur. J. Biochem. 204, 433–451 (1992). ArticleCAS Google Scholar
Guillet, V., Lapthorn, A., Hartley, R.W. & Mauguen, Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure1, 165– 176 (1993). ArticleCAS Google Scholar
Kobe, B. & Deisenhofer, J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature374, 183–186 (1995). ArticleCAS Google Scholar
Knighton, D.R., Zheng, J.H., Teneyck, L.F., Ashford, V.A., Xuong, N.H., Taylor, S.S. & Sowadski, J.M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine-monophosphate dependent protein-kinase. Science253 414–420 (1991). ArticleCAS Google Scholar
Mol, C.D., Arvai, A.S., Sanderson, R.J., Slupphaug, G., Kavli, B., Krokan, H.E., Mosbaugh, D.W. & Tainer, J.A. Crystal-structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell82, 701–708 ( 1995). ArticleCAS Google Scholar
Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin–DNase I complex. Nature347, 37–44 ( 1990). ArticleCAS Google Scholar
Whittaker, S. B-M., Boetzel, R., MacDonald, C., Lian, L-Y., Pommer, A.J., Reilly, A., James, R., Kleanthous, C. & Moore, G.R. NMR detection of slow conformational dynamics in an endonuclease toxin. J. Biol. NMR12, 145–159 (1998). ArticleCAS Google Scholar
Russo, A.A., Tong, L., Lee, J-O., Jeffrey, P.D. & Pavletich, N.P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16 (INK4a). Nature395, 237–243 (1998). ArticleCAS Google Scholar
Dalgaard, J.Z., Klar, A.J., Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, I.S. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res.25, 4626–4638 (1997). ArticleCAS Google Scholar
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. & Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature391, 43– 50 (1998). ArticleCAS Google Scholar
Santoro, D.W. & Bolen, M.M. Unfolding free energy changes determined by the linear extrapolation method: unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry27, 8063–8068 (1988). ArticleCAS Google Scholar
Johnson, C.M. & Fersht, A. R. Protein stability as a function of denaturant concentration -the thermal-stability of barnase in the presence of urea. Biochemistry34, 6795– 6804 (1995). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Meth. Enz.276, 307–326 (1996). Article Google Scholar
Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for large structures. Acta Crystallogr. A46, 467–473 (1990). Article Google Scholar
De la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enz.276, 472–494 (1997). ArticleCAS Google Scholar
Abrahams, J.P. & Leslie, A.G.W. Methods used in the structural determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D52, 30– 42 (1996). ArticleCAS Google Scholar
Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science235, 458–460 (1987). Article Google Scholar
Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature355, 472– 475 (1992). Article Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240– 255 (1997). ArticleCAS Google Scholar
Navaza, J. AMoRe: an automated molecular replacement program package. Acta Crystallogr. A50, 157–163 (1994). Article Google Scholar
Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140 –149 (1986). Article Google Scholar
Laskowski, R.A., MacArthur, M.W., Moss, D. & Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 292 (1993). ArticleCAS Google Scholar