Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell66, 519–531 (1991). ArticleCASPubMed Google Scholar
Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66, 507–517 (1991). ArticleCASPubMed Google Scholar
Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274, 246–248 (1996). ArticleCASPubMed Google Scholar
Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science274, 242–246 (1996). ArticleCASPubMed Google Scholar
Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol.141, 1193–1205 (1998). ArticleCASPubMedPubMed Central Google Scholar
Waters, J. C., Chen, R.-H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol.141, 1181–1191 (1998). ArticleCASPubMedPubMed Central Google Scholar
He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA94, 7965–7970 (1997). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA94, 12431–12436 (1997). ArticleCASPubMedPubMed Central Google Scholar
Page, A. M. & Hieter, P. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem.68, 583–609 (1999). ArticleCASPubMed Google Scholar
Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev.12, 1871–1883 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science279, 1041–1044 (1998). ArticleCASPubMed Google Scholar
Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol.141, 1393–1406 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science279, 1045–1047 (1998). ArticleCASPubMed Google Scholar
Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA95, 11193–11198 (1998). ArticleCASPubMedPubMed Central Google Scholar
Taagepera, S., Campbell, M. S. & Gorbsky, G. J. Cell-cycle-regulated localization of tyrosine and threonine phosphoepitopes at the kinetochores of mitotic chromosomes. Exp. Cell Res.221, 249–260 (1995). ArticleCASPubMed Google Scholar
Fukushige, T., Hawkins, M. G. & McGhee, J. D. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev. Biol.198, 286–302 (1998). CASPubMed Google Scholar
Hardwick, K. G. & Murray, A. W. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol.131, 709–720 (1995). ArticleCASPubMed Google Scholar
Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol.143, 283–295 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleCASPubMed Google Scholar
O’Connell, K. F., Leys, C. M. & White, J. G. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics149, 1303–1321 (1998). PubMedPubMed Central Google Scholar
McCarter, J., Bartlett, B., Dang, T. & Schedl, T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev. Biol.181, 121–143 (1997). ArticleCASPubMed Google Scholar
Iwasaki, K., McCarter, J., Francis, R. & Schedl, T. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J. Cell Biol.134, 699–714 (1996). ArticleCASPubMed Google Scholar
Rose, K. L. et al. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol.192, 59–77 (1997). ArticleCASPubMed Google Scholar
Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development124, 925–936 (1997). CASPubMed Google Scholar
Francis, R., Barton, M. K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics139, 579–606 (1995). CASPubMedPubMed Central Google Scholar
Francis, R., Maine, E. & Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics139, 607–630 (1995). CASPubMedPubMed Central Google Scholar
Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development125, 1803–1813 (1998). CASPubMed Google Scholar
Qiao, L. et al. Enhancers of glp-1, a gene required for cell-signaling in Caenorhabditis elegans, define a set of genes required for germline development. Genetics141, 551–569 (1995). CASPubMedPubMed Central Google Scholar
Seydoux, G., Schedl, T. & Greenwald, I. Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell61, 939–951 (1990). ArticleCASPubMed Google Scholar
Graham, P. L., Schedl, T. & Kimble, J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev. Genet.14, 471–484 (1993). ArticleCASPubMed Google Scholar
Graham, P. L. & Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics133, 919–931 (1993). CASPubMedPubMed Central Google Scholar
Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell81, 261–268 (1995). ArticleCASPubMed Google Scholar
Jin, D.-Y., Spencer, F. & Jeang, K.-T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell93, 81–91 (1998). ArticleCASPubMed Google Scholar
Hodgkin, J. A., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics91, 67–94 (1979). CASPubMedPubMed Central Google Scholar
Hyman, A. A. & White, J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol.105, 2123–2135 (1987). ArticleCASPubMed Google Scholar
Dasso, M. & Newport, J. W. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell61, 811–823 (1990). ArticleCASPubMed Google Scholar
Minshull, J., Sun, H., Tonks, N. K. & Murray, A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell79, 475–486 (1994). ArticleCASPubMed Google Scholar
Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol.146, 13–28 (1999). CASPubMedPubMed Central Google Scholar
Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics122, 19–27 (1989). CASPubMedPubMed Central Google Scholar
Stearns, T., Hoyt, M. A. & Botstein, D. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics124, 251–262 (1990). CASPubMedPubMed Central Google Scholar
Mumberg, D., Müller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae: comparision of tanscriptional activity and their use for heterologous expression. Nucleic Acids Res.22, 5767–5768 (1994). ArticleCASPubMedPubMed Central Google Scholar
Albertson, D. G. Formation of the first cleavage spindle in nematode embryos. Dev. Biol.101, 61–72 (1984). ArticleCASPubMed Google Scholar