Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans (original) (raw)

References

  1. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).
    Article CAS PubMed Google Scholar
  2. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996).
    Article CAS PubMed Google Scholar
  3. Gorbsky, G. J. Cell cycle checkpoints: arresting progress in mitosis. Bioessays 19, 193–197 (1997).
    Article CAS PubMed Google Scholar
  4. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).
  5. Hardwick, K. G. The spindle checkpoint. Trends Genet. 14, 1–4 (1998).
    Article CAS PubMed Google Scholar
  6. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).
    Article CAS PubMed Google Scholar
  7. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).
    Article CAS PubMed Google Scholar
  8. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).
    Article CAS PubMed Google Scholar
  9. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996).
    Article CAS PubMed Google Scholar
  10. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  11. Waters, J. C., Chen, R.-H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  12. He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 94, 7965–7970 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  13. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  14. Page, A. M. & Hieter, P. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem. 68, 583–609 (1999).
    Article CAS PubMed Google Scholar
  15. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  16. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 (1998).
    Article CAS PubMed Google Scholar
  17. Lorca, T. et al. Fizzy is required for activation of the APC/cyclosome in xenopus egg extracts. EMBO J. 17, 3565–3575 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  18. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141, 1393–1406 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  19. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045–1047 (1998).
    Article CAS PubMed Google Scholar
  20. Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA 95, 11193–11198 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  21. Taagepera, S., Campbell, M. S. & Gorbsky, G. J. Cell-cycle-regulated localization of tyrosine and threonine phosphoepitopes at the kinetochores of mitotic chromosomes. Exp. Cell Res. 221, 249–260 (1995).
    Article CAS PubMed Google Scholar
  22. Fukushige, T., Hawkins, M. G. & McGhee, J. D. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev. Biol. 198, 286–302 (1998).
    CAS PubMed Google Scholar
  23. Hardwick, K. G. & Murray, A. W. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131, 709–720 (1995).
    Article CAS PubMed Google Scholar
  24. Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283–295 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  25. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS PubMed Google Scholar
  26. O’Connell, K. F., Leys, C. M. & White, J. G. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149, 1303–1321 (1998).
    PubMed PubMed Central Google Scholar
  27. McCarter, J., Bartlett, B., Dang, T. & Schedl, T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev. Biol. 181, 121–143 (1997).
    Article CAS PubMed Google Scholar
  28. Iwasaki, K., McCarter, J., Francis, R. & Schedl, T. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J. Cell Biol. 134, 699–714 (1996).
    Article CAS PubMed Google Scholar
  29. Rose, K. L. et al. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol. 192, 59–77 (1997).
    Article CAS PubMed Google Scholar
  30. Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925–936 (1997).
    CAS PubMed Google Scholar
  31. Francis, R., Barton, M. K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).
    CAS PubMed PubMed Central Google Scholar
  32. Francis, R., Maine, E. & Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 139, 607–630 (1995).
    CAS PubMed PubMed Central Google Scholar
  33. Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803–1813 (1998).
    CAS PubMed Google Scholar
  34. Qiao, L. et al. Enhancers of glp-1, a gene required for cell-signaling in Caenorhabditis elegans, define a set of genes required for germline development. Genetics 141, 551–569 (1995).
    CAS PubMed PubMed Central Google Scholar
  35. Seydoux, G., Schedl, T. & Greenwald, I. Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell 61, 939–951 (1990).
    Article CAS PubMed Google Scholar
  36. Graham, P. L., Schedl, T. & Kimble, J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev. Genet. 14, 471–484 (1993).
    Article CAS PubMed Google Scholar
  37. Graham, P. L. & Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics 133, 919–931 (1993).
    CAS PubMed PubMed Central Google Scholar
  38. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995).
    Article CAS PubMed Google Scholar
  39. Jin, D.-Y., Spencer, F. & Jeang, K.-T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).
    Article CAS PubMed Google Scholar
  40. Hodgkin, J. A., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979).
    CAS PubMed PubMed Central Google Scholar
  41. Hyman, A. A. & White, J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 105, 2123–2135 (1987).
    Article CAS PubMed Google Scholar
  42. Dasso, M. & Newport, J. W. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61, 811–823 (1990).
    Article CAS PubMed Google Scholar
  43. Minshull, J., Sun, H., Tonks, N. K. & Murray, A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79, 475–486 (1994).
    Article CAS PubMed Google Scholar
  44. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).
    CAS PubMed PubMed Central Google Scholar
  45. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).
    CAS PubMed PubMed Central Google Scholar
  46. Stearns, T., Hoyt, M. A. & Botstein, D. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics 124, 251–262 (1990).
    CAS PubMed PubMed Central Google Scholar
  47. Mumberg, D., Müller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae: comparision of tanscriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  48. Albertson, D. G. Formation of the first cleavage spindle in nematode embryos. Dev. Biol. 101, 61–72 (1984).
    Article CAS PubMed Google Scholar

Download references