The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue (original) (raw)

References

  1. Ray, B.K. & Apirion, D. Characterization of 10S RNA: a new stable RNA molecule from Escherichia coli. Mol. Gen. Genet. 174, 25–32 (1979).
    Article CAS PubMed Google Scholar
  2. Subbarao, M.N. & Apirion, D. A precursor for a small stable RNA (10Sa RNA) of Escherichia coli. Mol. Gen. Genet. 217, 499–504 (1989).
    Article CAS PubMed Google Scholar
  3. Tyagi, J.S. & Kinger, A.K. Identification of the 10Sa RNA structural gene of Mycobacterium tuberculosis. Nucleic Acids Res. 20, 138 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  4. Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K. & Inokuchi, H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl Acad. Sci. USA 91, 9223–9227 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  5. Ushida, C., Himeno, H., Watanabe, T. & Muto, A. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res. 22, 3392–3396 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  6. Tu, G.F., Reid, G.E., Zhang, J.G., Moritz, R.L. & Simpson, R.J. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J. Biol. Chem. 270, 9322–9326 (1995).
    Article CAS PubMed Google Scholar
  7. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).
    Article CAS PubMed Google Scholar
  8. Parsell, D.A., Silber, K.R. & Sauer, R.T. Carboxy-terminal determinants of intracellular protein degradation. Genes Dev. 4, 277–286 (1990).
    Article CAS PubMed Google Scholar
  9. Roche, E.D. & Sauer, R.T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 18, 4579–4589 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  10. Williams, K.P., Martindale, K.A. & Bartel, D.P. Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J. 18, 5423–5433 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  11. Himeno, H. et al. In vitro trans translation mediated by alanine-charged 10Sa RNA. J. Mol. Biol. 268, 803–808 (1997).
    Article CAS PubMed Google Scholar
  12. Withey, J. & Friedman, D. Analysis of the role of _trans_-translation in the requirement of tmRNA for lambda-immP22 growth in Escherichia coli. J. Bacteriol. 181, 2148–2157 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  13. Komine, Y., Kitabatake, M. & Inokuchi, H. 10Sa RNA is associated with 70S ribosome particles in Escherichia coli. J. Biol. Chem. (Tokyo) 119, 463–467 (1996).
    Article CAS Google Scholar
  14. Tadaki, T., Fukushima, M., Ushida, C., Himeno, H. & Muto, A. Interaction of 10Sa RNA with ribosomes in Escherichia coli. FEBS Lett. 399, 223–226 (1996).
    Article CAS PubMed Google Scholar
  15. Nameki, N., Tadaki, T., Muto, A. & Himeno, H. Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J. Mol. Biol. 289, 1–7 (1999).
    Article CAS PubMed Google Scholar
  16. Oh, B.K., Chauhan, A.K., Isono, K. & Apirion, D. Location of a gene (ssrA) for a small, stable RNA (10Sa RNA) in the Escherichia coli chromosome. J. Bacteriol. 172, 4708–4709 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  17. Srivastava, R.K., Miczak, A. & Apirion, D. Maturation of precursor 10Sa RNA in Escherichia coli is a two-step process: the first reaction is catalyzed by RNase III in presence of Mn2+. Biochimie 72, 791–802 (1990).
    Article CAS PubMed Google Scholar
  18. Srivastava, R.A., Srivastava, N. & Apirion, D. Characterization of the RNA processing enzyme RNase III from wild type and overexpressing Escherichia coli cells in processing natural RNA substrates. Int. J. Biochem. 24, 737–749 (1992).
    Article CAS PubMed Google Scholar
  19. Li, Z., Pandit, S. & Deutscher, M.P., 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl Acad. Sci. USA 95, 2856–2861 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  20. Lin-Chao, S., Wei, C.L. & Lin, Y.T., RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc. Natl Acad. Sci. USA 96, 12406–12411 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  21. Williams, K.P. The tmRNA Website. Nucleic Acids Res. 28, 168–161 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  22. Felden, B., et al. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J. 17, 3188–3196 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  23. Williams, K.P. & Bartel, D.P. Phylogenetic analysis of tmRNA secondary structure. RNA 2, 1306–1310 (1996).
    CAS PubMed PubMed Central Google Scholar
  24. Felden, B., et al. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA 3, 89–103 (1997).
    CAS PubMed PubMed Central Google Scholar
  25. Zwieb, C. & Wower, J. tmRDB (tmRNA database). Nucleic Acids Res. 28, 169–170 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  26. Nameki, N., Chattopadhyay, P., Himeno, H., Muto, A. & Kawai, G. An NMR and mutational analysis of an RNA pseudoknot of Escherichia coli tmRNA involved in _trans_-translation. Nucleic Acids Res. 27, 3667–3675 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  27. Karzai, A.W., Susskind, M.M. & Sauer, R.T. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 18, 3793–3799 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  28. Aevarsson, A., et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  29. Nyborg, J., et al. Macromolecular mimicry in protein biosynthesis. Fold. Des. 2, S7–11 (1997).
    Article CAS PubMed Google Scholar
  30. Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A. & Liljas, A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 286, 2349–2352 (1999).
    Article CAS PubMed Google Scholar
  31. Rudinger-Thirion, J., Giege, R. & Felden, B. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA 5, 989–992 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  32. Barends, S., Wower, J. & Kraal, B. Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry 39, 2652–2658 (2000).
    Article CAS PubMed Google Scholar
  33. Rodnina, M.V., Pape, T., Fricke, R. & Wintermeyer, W. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem. Cell Biol. 73, 1221–1227 (1995).
    Article CAS PubMed Google Scholar
  34. Ehretsmann, C.P., Carpousis, A.J. & Krisch, H.M. mRNA degradation in procaryotes. FASEB J. 6, 3186–3192 (1992).
    Article CAS PubMed Google Scholar
  35. Farabaugh, P. J. Programmed translational frameshifting. Microbiol. Rev. 60, 103–134 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  36. Gesteland, R.F. & Atkins, J.F. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 65, 741–768 (1996).
    Article CAS PubMed Google Scholar
  37. Cate, J.H., Yusupov, M.M., Yusupova, G.Z., Earnest, T.N. & Noller, H.F. X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095–2104 (1999).
    Article CAS PubMed Google Scholar
  38. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  39. Herman, C., Thevenet, D., Bouloc, P., Walker, G.C. & D'Ari, R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12, 1348–1355 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  40. Wickner, S., Maurizi, M.R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).
    Article CAS PubMed Google Scholar
  41. Porankiewicz, J., Wang, J. & Clarke, A.K. New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol. Microbiol. 32, 449–458 (1999).
    Article CAS PubMed Google Scholar
  42. Wang, J., Hartling, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).
    Article CAS PubMed Google Scholar
  43. Neuwald, A.F. The hexamerization domain of N-ethylmaleimide-sensitive factor: structural clues to chaperone function. Structure Fold. Des. 7, R19–23 (1999).
    Article CAS PubMed Google Scholar
  44. Bochtler, M., et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000).
    Article CAS PubMed Google Scholar
  45. Akiyama, Y., Yoshihisa, T. & Ito, K. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270, 23485–23490 (1995).
    Article CAS PubMed Google Scholar
  46. Levchenko, I., Smith, C.K., Walsh, N.P., Sauer, R.T. & Baker, T.A. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell 91, 939–947 (1997).
    Article CAS PubMed Google Scholar
  47. Smith, C.K., Baker, T.A. & Sauer, R.T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl Acad. Sci. USA 96, 6678–6682 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  48. Hoskins, J.R., Pak, M., Maurizi, M.R. & Wickner, S. The role of the ClpA chaperone in proteolysis by ClpAP. Proc. Natl Acad. Sci. USA 95, 12135–12140 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  49. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).
    Article CAS PubMed Google Scholar
  50. Silber, K.R., Keiler, K.C. & Sauer, R.T. Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc. Natl Acad. Sci. USA 89, 295–299 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  51. Ponting, C.P. Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci. 6, 464–468 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  52. Keiler, K.C. & Sauer, R.T. Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol. Chem. 271, 2589–2593 (1996).
    Article CAS PubMed Google Scholar
  53. Bass, S., Gu, Q. & Christen, A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J. Bacteriol. 178, 1154–1161 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  54. Tatusov, R.L., Galperin, M.Y., Natale, D.A. & Koonin, E.V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  55. Felden, B., Gesteland, R.F. & Atkins, J.F. Eubacterial tmRNAs: everywhere except the alpha-proteobacteria? Biochim. Biophys. Acta 1446, 145–148 (1999).
    Article CAS PubMed Google Scholar
  56. Preiss, T. & Hentze, M.W. From factors to mechanisms: translation and translational control in eukaryotes. Curr. Opin. Genet. Dev. 9, 515–521 (1999).
    Article CAS PubMed Google Scholar
  57. Kessel, M., et al. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol. 250, 587–594 (1995).
    Article CAS PubMed Google Scholar
  58. Schimmel, P., Giege, R., Moras, D. & Yokoyama, S. An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl Acad. Sci. USA 90, 8763–8768 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  59. Huang, C., Wolfgang, M.C., Withey, J., Koomey, M. & Friedman, D.I. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J. 19, 1098–1107 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  60. Hutchison, C.A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).
    Article CAS PubMed Google Scholar
  61. Baumler, A.J., Kusters, J.G., Stojiljkovic, I. & Heffron, F. Salmonella typhomurium loci involved in survival within macrophages. Infect. Immun. 62, 1623–1630 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  62. Julio, S.M., Heithoff, D.M. & Mahan, M.J. ssrA (tmRNA) plays a role in Salmonella enterica serovar typhimurium pathogenesis. J. Bacteriol. 182, 1558–1563 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  63. Oh, B.K. & Apirion, D. 10Sa RNA, a small stable RNA of Escherichia coli, is functional. Mol. Gen. Genet. 229, 52–56 (1991).
    Article CAS PubMed Google Scholar
  64. Kirby, J.E., Trempy, J.E. & Gottesman, S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J. Bacteriol. 176, 2068–2081 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  65. Retallack, D.M., Johnson, L.L. & Friedman, D.I. Role for 10Sa RNA in the growth of lambda-P22 hybrid phage. J. Bacteriol. 176, 2082–2089 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  66. Retallack, D.M. & Friedman, D.I. A role for a small stable RNA in modulating the activity of DNA-binding proteins. Cell 83, 227–235 (1995).
    Article CAS PubMed Google Scholar
  67. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).
    Article CAS PubMed Google Scholar
  68. Keiler, K.C., Shapiro, L. & Kelly, K.P. tmRNA's which encode proteolysis inducing tags are found in all bacterial genomes: a two-piece tmRNA functions in Caulobacter. Proc. Natl. Acad. Sci. USA, in the press.

Download references