The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue (original) (raw)
References
Ray, B.K. & Apirion, D. Characterization of 10S RNA: a new stable RNA molecule from Escherichia coli. Mol. Gen. Genet.174, 25–32 (1979). ArticleCASPubMed Google Scholar
Subbarao, M.N. & Apirion, D. A precursor for a small stable RNA (10Sa RNA) of Escherichia coli. Mol. Gen. Genet.217, 499–504 (1989). ArticleCASPubMed Google Scholar
Tyagi, J.S. & Kinger, A.K. Identification of the 10Sa RNA structural gene of Mycobacterium tuberculosis. Nucleic Acids Res.20, 138 (1992). ArticleCASPubMedPubMed Central Google Scholar
Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K. & Inokuchi, H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl Acad. Sci. USA91, 9223–9227 (1994). ArticleCASPubMedPubMed Central Google Scholar
Ushida, C., Himeno, H., Watanabe, T. & Muto, A. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res.22, 3392–3396 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tu, G.F., Reid, G.E., Zhang, J.G., Moritz, R.L. & Simpson, R.J. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J. Biol. Chem.270, 9322–9326 (1995). ArticleCASPubMed Google Scholar
Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science271, 990–993 (1996). ArticleCASPubMed Google Scholar
Parsell, D.A., Silber, K.R. & Sauer, R.T. Carboxy-terminal determinants of intracellular protein degradation. Genes Dev.4, 277–286 (1990). ArticleCASPubMed Google Scholar
Williams, K.P., Martindale, K.A. & Bartel, D.P. Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J.18, 5423–5433 (1999). ArticleCASPubMedPubMed Central Google Scholar
Himeno, H. et al. In vitro trans translation mediated by alanine-charged 10Sa RNA. J. Mol. Biol.268, 803–808 (1997). ArticleCASPubMed Google Scholar
Withey, J. & Friedman, D. Analysis of the role of _trans_-translation in the requirement of tmRNA for lambda-immP22 growth in Escherichia coli. J. Bacteriol.181, 2148–2157 (1999). ArticleCASPubMedPubMed Central Google Scholar
Komine, Y., Kitabatake, M. & Inokuchi, H. 10Sa RNA is associated with 70S ribosome particles in Escherichia coli. J. Biol. Chem. (Tokyo)119, 463–467 (1996). ArticleCAS Google Scholar
Tadaki, T., Fukushima, M., Ushida, C., Himeno, H. & Muto, A. Interaction of 10Sa RNA with ribosomes in Escherichia coli. FEBS Lett.399, 223–226 (1996). ArticleCASPubMed Google Scholar
Nameki, N., Tadaki, T., Muto, A. & Himeno, H. Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J. Mol. Biol.289, 1–7 (1999). ArticleCASPubMed Google Scholar
Oh, B.K., Chauhan, A.K., Isono, K. & Apirion, D. Location of a gene (ssrA) for a small, stable RNA (10Sa RNA) in the Escherichia coli chromosome. J. Bacteriol.172, 4708–4709 (1990). ArticleCASPubMedPubMed Central Google Scholar
Srivastava, R.K., Miczak, A. & Apirion, D. Maturation of precursor 10Sa RNA in Escherichia coli is a two-step process: the first reaction is catalyzed by RNase III in presence of Mn2+. Biochimie72, 791–802 (1990). ArticleCASPubMed Google Scholar
Srivastava, R.A., Srivastava, N. & Apirion, D. Characterization of the RNA processing enzyme RNase III from wild type and overexpressing Escherichia coli cells in processing natural RNA substrates. Int. J. Biochem.24, 737–749 (1992). ArticleCASPubMed Google Scholar
Li, Z., Pandit, S. & Deutscher, M.P., 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl Acad. Sci. USA95, 2856–2861 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin-Chao, S., Wei, C.L. & Lin, Y.T., RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc. Natl Acad. Sci. USA96, 12406–12411 (1999). ArticleCASPubMedPubMed Central Google Scholar
Felden, B., et al. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J.17, 3188–3196 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nameki, N., Chattopadhyay, P., Himeno, H., Muto, A. & Kawai, G. An NMR and mutational analysis of an RNA pseudoknot of Escherichia coli tmRNA involved in _trans_-translation. Nucleic Acids Res.27, 3667–3675 (1999). ArticleCASPubMedPubMed Central Google Scholar
Karzai, A.W., Susskind, M.M. & Sauer, R.T. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J.18, 3793–3799 (1999) ArticleCASPubMedPubMed Central Google Scholar
Aevarsson, A., et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J.13, 3669–3677 (1994). ArticleCASPubMedPubMed Central Google Scholar
Nyborg, J., et al. Macromolecular mimicry in protein biosynthesis. Fold. Des.2, S7–11 (1997). ArticleCASPubMed Google Scholar
Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A. & Liljas, A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science286, 2349–2352 (1999). ArticleCASPubMed Google Scholar
Rudinger-Thirion, J., Giege, R. & Felden, B. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA5, 989–992 (1999). ArticleCASPubMedPubMed Central Google Scholar
Barends, S., Wower, J. & Kraal, B. Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry39, 2652–2658 (2000). ArticleCASPubMed Google Scholar
Rodnina, M.V., Pape, T., Fricke, R. & Wintermeyer, W. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem. Cell Biol.73, 1221–1227 (1995). ArticleCASPubMed Google Scholar
Ehretsmann, C.P., Carpousis, A.J. & Krisch, H.M. mRNA degradation in procaryotes. FASEB J.6, 3186–3192 (1992). ArticleCASPubMed Google Scholar
Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev.12, 1338–1347 (1998). ArticleCASPubMedPubMed Central Google Scholar
Herman, C., Thevenet, D., Bouloc, P., Walker, G.C. & D'Ari, R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev.12, 1348–1355 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wickner, S., Maurizi, M.R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science286, 1888–1893 (1999). ArticleCASPubMed Google Scholar
Porankiewicz, J., Wang, J. & Clarke, A.K. New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol. Microbiol.32, 449–458 (1999). ArticleCASPubMed Google Scholar
Wang, J., Hartling, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell91, 447–456 (1997). ArticleCASPubMed Google Scholar
Neuwald, A.F. The hexamerization domain of N-ethylmaleimide-sensitive factor: structural clues to chaperone function. Structure Fold. Des.7, R19–23 (1999). ArticleCASPubMed Google Scholar
Bochtler, M., et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature403, 800–805 (2000). ArticleCASPubMed Google Scholar
Akiyama, Y., Yoshihisa, T. & Ito, K. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem.270, 23485–23490 (1995). ArticleCASPubMed Google Scholar
Levchenko, I., Smith, C.K., Walsh, N.P., Sauer, R.T. & Baker, T.A. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell91, 939–947 (1997). ArticleCASPubMed Google Scholar
Smith, C.K., Baker, T.A. & Sauer, R.T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl Acad. Sci. USA96, 6678–6682 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hoskins, J.R., Pak, M., Maurizi, M.R. & Wickner, S. The role of the ClpA chaperone in proteolysis by ClpAP. Proc. Natl Acad. Sci. USA95, 12135–12140 (1998). ArticleCASPubMedPubMed Central Google Scholar
Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature401, 90–93 (1999). ArticleCASPubMed Google Scholar
Silber, K.R., Keiler, K.C. & Sauer, R.T. Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc. Natl Acad. Sci. USA89, 295–299 (1992). ArticleCASPubMedPubMed Central Google Scholar
Keiler, K.C. & Sauer, R.T. Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol. Chem.271, 2589–2593 (1996). ArticleCASPubMed Google Scholar
Bass, S., Gu, Q. & Christen, A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J. Bacteriol.178, 1154–1161 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tatusov, R.L., Galperin, M.Y., Natale, D.A. & Koonin, E.V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res.28, 33–36 (2000). ArticleCASPubMedPubMed Central Google Scholar
Preiss, T. & Hentze, M.W. From factors to mechanisms: translation and translational control in eukaryotes. Curr. Opin. Genet. Dev.9, 515–521 (1999). ArticleCASPubMed Google Scholar
Kessel, M., et al. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol.250, 587–594 (1995). ArticleCASPubMed Google Scholar
Schimmel, P., Giege, R., Moras, D. & Yokoyama, S. An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl Acad. Sci. USA90, 8763–8768 (1993). ArticleCASPubMedPubMed Central Google Scholar
Huang, C., Wolfgang, M.C., Withey, J., Koomey, M. & Friedman, D.I. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J.19, 1098–1107 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hutchison, C.A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science286, 2165–2169 (1999). ArticleCASPubMed Google Scholar
Baumler, A.J., Kusters, J.G., Stojiljkovic, I. & Heffron, F. Salmonella typhomurium loci involved in survival within macrophages. Infect. Immun.62, 1623–1630 (1994). ArticleCASPubMedPubMed Central Google Scholar
Julio, S.M., Heithoff, D.M. & Mahan, M.J. ssrA (tmRNA) plays a role in Salmonella enterica serovar typhimurium pathogenesis. J. Bacteriol.182, 1558–1563 (2000). ArticleCASPubMedPubMed Central Google Scholar
Oh, B.K. & Apirion, D. 10Sa RNA, a small stable RNA of Escherichia coli, is functional. Mol. Gen. Genet.229, 52–56 (1991). ArticleCASPubMed Google Scholar
Kirby, J.E., Trempy, J.E. & Gottesman, S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J. Bacteriol.176, 2068–2081 (1994). ArticleCASPubMedPubMed Central Google Scholar
Retallack, D.M., Johnson, L.L. & Friedman, D.I. Role for 10Sa RNA in the growth of lambda-P22 hybrid phage. J. Bacteriol.176, 2082–2089 (1994). ArticleCASPubMedPubMed Central Google Scholar
Retallack, D.M. & Friedman, D.I. A role for a small stable RNA in modulating the activity of DNA-binding proteins. Cell83, 227–235 (1995). ArticleCASPubMed Google Scholar
Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell5, 639–648 (2000). ArticleCASPubMed Google Scholar
Keiler, K.C., Shapiro, L. & Kelly, K.P. tmRNA's which encode proteolysis inducing tags are found in all bacterial genomes: a two-piece tmRNA functions in Caulobacter. Proc. Natl. Acad. Sci. USA, in the press.