Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres (original) (raw)

References

  1. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17, 231–235 (1997).
    Article CAS Google Scholar
  2. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nature Genet. 17, 236–239 (1997).
    Article CAS Google Scholar
  3. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).
    Article CAS Google Scholar
  4. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).
    Article CAS Google Scholar
  5. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).
    Article CAS Google Scholar
  6. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996).
    Article CAS Google Scholar
  7. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).
    Article CAS Google Scholar
  8. Dolganov, G.M. et al. Human Rad50 is physically associated with hMre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16, 4832–4841 (1996).
    Article CAS Google Scholar
  9. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen Breakage Syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).
    Article CAS Google Scholar
  10. Haber, J.E. The many interfaces of Mre11. Cell 95, 583–586 (1998).
    Article CAS Google Scholar
  11. Nelms, B.E., Maser, R.S., MacKay, J.F., Lagally, M.G. & Petrini, J.H.J. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998).
    Article CAS Google Scholar
  12. Lim, D.-S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).
    Article CAS Google Scholar
  13. Bressan, D.A., Baxter, B.K. & Petrini, J.H.J. The Mre11/Rad50/Xrs2 protein complex facilitates homologous recombination-based double strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7681–7687 (1999).
    Article CAS Google Scholar
  14. Usui, T., Ohta, T., Oshiumi, J., Ogawa, T.H. & Ogawa, T. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95, 705–716 (1998).
    Article CAS Google Scholar
  15. Nugent, C. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).
    Article CAS Google Scholar
  16. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).
    Article CAS Google Scholar
  17. Le, S., Moore, J.K., Haber, J.E. & Greider, C.W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999).
    CAS PubMed PubMed Central Google Scholar
  18. Xiao, Y. & Weaver, D.T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25, 2985–2991 (1997).
    Article CAS Google Scholar
  19. Luo, G. et al. Disruption of mRad50 causes ES cell lethality, abnormal embryonic development and sensitivity to ionizing radiation. Proc. Natl Acad. Sci. USA 96, 7376–7381 (1999).
    Article CAS Google Scholar
  20. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).
    Article CAS Google Scholar
  21. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).
    Article CAS Google Scholar
  22. Maser, R.S., Monsen, K.J., Nelms, B. & Petrini, J.H.J. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087–6096 (1997).
    Article CAS Google Scholar
  23. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).
    Article CAS Google Scholar
  24. Yeager, T.R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179 (1999).
    CAS PubMed Google Scholar
  25. Stewart, G. et al. The DNA double strand break repair gene hMre11, is mutated in individuals with a new ataxia telangiectasia like disorders (ATLD). Cell 99, 577–587 (1999).
    Article CAS Google Scholar
  26. Martin, S.G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S.M. Relocalization of telomeric Ku and Sir proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).
    Article CAS Google Scholar
  27. Mills, K.D., Sinclair, D.A. & Guarente, L. Mec1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620 (1999).
    Article CAS Google Scholar
  28. Moore, J.K. & Haber, J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).
    Article CAS Google Scholar
  29. Paull, T.T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).
    Article CAS Google Scholar
  30. Harley, C.B. Telomeres and aging. in Telomeres (eds Blackburn, E.H. & Greider, C.W.) 247–265 (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1995).
    Google Scholar
  31. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
    Article CAS Google Scholar
  32. Shevchenko, A. et al. Rapid ‘de novo’ peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1015–1024 (1997).
    Article CAS Google Scholar
  33. Mann, M. & Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994).
    Article CAS Google Scholar

Download references