Control of Müller glial cell proliferation and activation following retinal injury (original) (raw)

References

  1. Ridet, J. L., Malhotra, S. K., Privat, A. & Gage, F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20, 570–577 (1997). [erratum appears in Trends Neurosci. 21, 80, 1998]
    Article CAS Google Scholar
  2. Wilson, J. X. Antioxidant defense of the brain: a role for astrocytes. Can. J. Physiol. Pharmacol. 75, 1149–1163 (1997).
    Article CAS Google Scholar
  3. Ide, C. F. et al. Cellular and molecular correlates to plasticity during recovery from injury in the developing mammalian brain. Prog. Brain Res. 108, 365–377 (1996).
    Article CAS Google Scholar
  4. Streit, W. J., Walter, S. A. & Pennell, N. A. Reactive microgliosis. Prog. Neurobiol. 57, 563–581 (1999).
    Article CAS Google Scholar
  5. Unger, J. W. Glial reaction in aging and Alzheimer's disease. Microsc. Res. Tech. 43, 24–28 (1998).
    Article CAS Google Scholar
  6. Streit, W. J. Microglial response to brain injury: a brief synopsis. Toxicol. Pathol. 28, 28–30 (2000).
    Article CAS Google Scholar
  7. MacLaren, R. E. Development and role of retinal glia in regeneration of ganglion cells following retinal injury. Br. J. Ophthalmol. 80, 458 –464 (1996).
    Article CAS Google Scholar
  8. Sahel, J. A., Albert, D. M. & Lessell, S. [Proliferation of retinal glia and excitatory amino acids]. Ophtalmologie 4, 13– 16 (1990).
    CAS Google Scholar
  9. Humphrey, M. F., Constable, I. J., Chu, Y. & Wiffen, S. A quantitative study of the lateral spread of Muller cell responses to retinal lesions in the rabbit. J. Comp. Neurol. 334, 545–558 (1993).
    Article CAS Google Scholar
  10. Rutka, J. T. & Smith, S. L. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res. 53, 3624–3631 (1993).
    CAS Google Scholar
  11. Reichenbach, A. et al. The Muller (glial) cell in normal and diseased retina: a case for single-cell electrophysiology. Ophthalmic Res. 29, 326–340 (1997).
    Article CAS Google Scholar
  12. Sueishi, K. et al. Endothelial and glial cell interaction in diabetic retinopathy via the function of vascular endothelial growth factor (VEGF). Pol. J. Pharmacol. 48, 307–316 (1996).
    CAS Google Scholar
  13. Amin, R. H. et al. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38, 36–47 (1997).
    CAS Google Scholar
  14. Taomoto, M. et al. Retinal degeneration induced by N-methyl-N-nitrosourea in Syrian golden hamsters. Graefes Arch. Clin. Exp. Ophthalmol. 236, 688–695 (1998).
    Article CAS Google Scholar
  15. Hjelmeland, L. E. & Harvey, A. K. in Progress in Retinal Research, Vol. 7 (eds. Osborn, N. & Chader, G. 259–281 (Pergamon, New York, 1988).
    Google Scholar
  16. Nork, T. M., Ghobrial, M. W., Peyman, G. A. & Tso, M. O. Massive retinal gliosis. A reactive proliferation of Muller cells. Arch. Ophthalmol. 104, 1383–1389 (1986).
    Article CAS Google Scholar
  17. Cogan, D. G. Congenital anomalies of the retina. Birth Defects Orig. Artic. Ser. 7, 41–51 (1971).
    CAS Google Scholar
  18. Berger, B., Peyman, G. A., Juarez, C., Mason, G. & Raichand, M. Massive retinal gliosis simulating choroidal melanoma. Can. J. Ophthalmol. 14, 285–290 (1979).
    CAS Google Scholar
  19. Dithmar, S., Holz, F. G. & Volcker, H. E. [Massive reactive gliosis of the retina.] Klin. Monatsbl. Augenheilkd 211, 338– 341 (1997).
    Article CAS Google Scholar
  20. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).
    Article CAS Google Scholar
  21. Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149– 1163 (1995).
    Article CAS Google Scholar
  22. Sanchez, I. & Dynlacht, B. D. Transcriptional control of the cell cycle. Curr. Opin. Cell Biol. 8, 318 –324 (1996).
    Article CAS Google Scholar
  23. Yee, A. S., Shih, H. H. & Tevosian, S. G. New perspectives on retinoblastoma family functions in differentiation. Front. Biosci. 3, D532 –547 (1998).
    Article CAS Google Scholar
  24. Hengst, L. & Reed, S. I. Inhibitors of the Cip/Kip family . Curr. Top. Microbiol. Immunol. 227, 25 –41 (1998).
    CAS Google Scholar
  25. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).
    Article CAS Google Scholar
  26. Dowling, J. E. The Retina—An Approachable Part of the Brain (Harvard Univ. Press, Cambridge, Massachusetts, 1987).
    Google Scholar
  27. LaBaer, J. et al. New functional activities for the p21 family of CDK inhibitors . Genes Dev. 11, 847–862 (1997).
    Article CAS Google Scholar
  28. Cheng, M. et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571–1583 (1999).
    Article CAS Google Scholar
  29. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85, 721–732 (1996).
    Article CAS Google Scholar
  30. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85, 733–744 (1996).
    Article CAS Google Scholar
  31. Rich, K. A., Figueroa, S. L., Zhan, Y. & Blanks, J. C. Effects of Muller cell disruption on mouse photoreceptor cell development . Exp. Eye Res. 61, 235– 248 (1995).
    Article CAS Google Scholar
  32. Cepko, C. L. et al. Lineage analysis using retroviral vectors. Methods 14, 393–406 (1998).
    Article CAS Google Scholar
  33. Turner, D. L. & Cepko, C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136 (1987).
    Article CAS Google Scholar
  34. Fields-Berry, S. C., Halliday, A. L. & Cepko, C. L. A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl. Acad. Sci. USA 89, 693– 697 (1992).
    Article CAS Google Scholar
  35. Nork, T. M., Wallow, I. H., Sramek, S. J. & Anderson, G. Muller's cell involvement in proliferative diabetic retinopathy. Arch. Ophthalmol. 105, 1424–1429 (1987).
    Article CAS Google Scholar
  36. Robison, W. G. Jr., Tillis, T. N., Laver, N. & Kinoshita, J. H. Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp. Eye Res. 50, 355–366 (1990).
    Article CAS Google Scholar
  37. Fariss, R. N., Li, Z. Y. & Milam, A. H. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am. J. Ophthalmol. 129, 215–223 (2000).
    Article CAS Google Scholar
  38. Li, Z. Y., Possin, D. E. & Milam, A. H. Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology 102, 805– 816 (1995).
    Article CAS Google Scholar
  39. Kimura, H. et al. Cellular response in subretinal neovascularization induced by bFGF-impregnated microspheres. Invest. Ophthalmol. Vis. Sci. 40, 524–528 (1999).
    CAS Google Scholar
  40. Kuhrt, H. et al. Changes in CD44 and ApoE immunoreactivities due to retinal pathology of man and rat. J. Hirnforsch. 38, 223– 229 (1997).
    CAS Google Scholar
  41. Birnbach, C. D., Jarvelainen, M., Possin, D. E. & Milam, A. H. Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 101, 1211– 1219 (1994).
    Article CAS Google Scholar
  42. Madigan, M. C., Penfold, P. L., Provis, J. M., Balind, T. K. & Billson, F. A. Intermediate filament expression in human retinal macroglia. Histopathologic changes associated with age-related macular degeneration. Retina 14, 65– 74 (1994).
    Article CAS Google Scholar
  43. Foisner, R. Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. Bioessays 19, 297– 305 (1997).
    Article CAS Google Scholar
  44. Levine, E. M., Close, J., Fero, M., Ostrovsky, A. & Reh, T. A. p27(Kip1) regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev. Biol. 219, 299–314 (2000).
    Article CAS Google Scholar
  45. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).
    Article CAS Google Scholar
  46. Dyer, M. A. & Cepko, C. L. p57 regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development (in press).
  47. Morrow, E. M., Belliveau, M. J. & Cepko, C. L. Two phases of rod photoreceptor differentiation during rat retinal development. J. Neurosci. 18, 3738–3748 (1998).
    Article CAS Google Scholar
  48. Cepko, C. L., Fields-Berry, S., Ryder, E., Austin, C. & Golden, J. Lineage analysis using retroviral vectors. Curr. Top. Dev. Biol. 36, 51– 74 (1998).
    Article CAS Google Scholar
  49. Sahel, J. A. et al. Mitogenic effects of excitatory amino acids in the adult rat retina. Exp. Eye Res. 53, 657– 664 (1991).
    Article CAS Google Scholar

Download references