The septin CDCrel-1 binds syntaxin and inhibits exocytosis (original) (raw)
References
Rothman, J. & Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol.4, 220–233 (1994). ArticleCAS Google Scholar
Hanson, P., Heuser, J. & Jahn, R. Neurotransmitter release - four years of SNARE complexes. Curr. Opin. Neurobiol.7, 310– 315 (1997). ArticleCAS Google Scholar
Weis, W. & Scheller, R. SNARE the rod, coil the complex. Nature395, 328–329 (1998). ArticleCAS Google Scholar
Sutton, R., Fasshauer, D., Jahn, R. & Brunger, A. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature395, 347–353 (1998). ArticleCAS Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 ( 1998). ArticleCAS Google Scholar
Otto, H., Hanson, P. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA94, 6197–6201 (1997). ArticleCAS Google Scholar
Honer, W., Hu, L. & Davies, P. Human synaptic proteins with a heterogeneous distribution in cerebellum and visual cortex. Brain Res.609, 9– 20 (1993). ArticleCAS Google Scholar
Honer, W. et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience78, 99–110 (1997). ArticleCAS Google Scholar
Caltagarone, J., Rhodes, J., Honer, W. & Bowser, R. Localization of a novel septin protein, hCDCrel-1, in neurons of the human brain. Neuroreport9, 2907–2912 (1998). ArticleCAS Google Scholar
Hartwell, L. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res.69, 265–276 (1971). ArticleCAS Google Scholar
Byers, B. & Goetsch, L. Loss of the filamentous ring in cytokinesis-defective mutants of budding yeast. J. Cell Biol.70, 35 (1976). Google Scholar
Haarer, B. K. & Pringle, J. R. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell. Biol.7, 3678–3687 (1987). ArticleCAS Google Scholar
Kim, H. B., Haarer, B. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol.112, 535–544 (1991). ArticleCAS Google Scholar
Ford, S. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Devel. Genet.12, 281–292 (1991). ArticleCAS Google Scholar
Sanders, S. L. & Field, C. M. Septins in common? Curr. Biol.4, 907–910 (1994). ArticleCAS Google Scholar
Longtine, M. S. et al. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol.8, 106–119 (1996). ArticleCAS Google Scholar
Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell77, 371–379 (1994). ArticleCAS Google Scholar
Fares, H., Peifer, M. & Pringle, J. R. Localization and possible functions of Drosophila septins. Mol. Biol. Cell6, 1843– 1859 (1995). ArticleCAS Google Scholar
Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol.133, 605– 616 (1996). ArticleCAS Google Scholar
Kumar, S., Tomooka, Y. & Noda, M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Comm.185, 1155–1161 (1992). ArticleCAS Google Scholar
Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Devel.11, 1535–1547 (1997). ArticleCAS Google Scholar
Zieger, B., Hashimoto, Y. & Ware, J. Alternative expression of platelet glycoprotein Ibbeta mRNA from an adjacent 5´ gene with an imperfect polyadenylation signal sequence. J. Clin. Invest.99, 520– 525 (1997). ArticleCAS Google Scholar
McKie, J. M., Sutherland, H. F., Harvey, E., Kim, U.-J. & Scambler, P. J. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11. Hum. Genet.101, 6–12 ( 1997). ArticleCAS Google Scholar
Xie, H., Howard, J., Surka, M. & Trimble, W. Characterization of the mammalian septin H5: Distinct properties of cytoskeletal and membrane association from other mammalian septins. Cell Motil. Cytoskel. (in press).
Huttner, W., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol.96, 1374– 1388 (1983). ArticleCAS Google Scholar
Wheeler, M. et al. Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinology137, 1340–1348 (1996). ArticleCAS Google Scholar
Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature359, 832–835 (1992). ArticleCAS Google Scholar
Walch-Solimena, C. et al. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J. Cell Biol.128, 637–645 (1995). ArticleCAS Google Scholar
Hsu, S.-C. et al. Subunit composition, protein interactions and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron20, 1111–1122 ( 1998). ArticleCAS Google Scholar
Bowser, R., Muller, H., Govindan, B. & Novick, P. Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J. Cell Biol.118, 1041–1056 (1992). ArticleCAS Google Scholar
Hsu, S. et al. The mammalian brain rsec6/8 complex. Neuron17, 1209–1219 (1996). ArticleCAS Google Scholar
Landis, D., Hall, A., Weinstein, L. & Reese, T. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron1, 201–209 (1988). ArticleCAS Google Scholar
Hirokawa, N., Sobue, K., Kanda, K., Harada, A. & Yorifuji, H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol.108, 111–126 (1989). ArticleCAS Google Scholar
Chandler, D. & Heuser, J. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol.86, 666–674 (1980). ArticleCAS Google Scholar
Monck, J. & Fernandez, J. The exocytic fusion pore and neurotransmitter release. Neuron12, 707– 716 (1994). ArticleCAS Google Scholar
Burgess, R., Deitcher, D. & Schwarz, T. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J. Cell Biol.138, 861–875 (1997). ArticleCAS Google Scholar
Byers, B. in The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance (eds. Strathern, J., Jones, E. & Broach, J.) 59– 96 (Cold Spring Harbor Lab Press, Cold Spring Harbor, New York, 1981). Google Scholar
Gaisano, H. et al. Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol. Biol. Cell7, 2019–2027 (1996). ArticleCAS Google Scholar
Gaisano, H. Y., Sheu, L., Foskett, J. K. & Trimble, W. S. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform-2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J. Biol. Chem.269, 17062–17066 (1994). CASPubMed Google Scholar
Huang, X. et al. Truncated SNAP-25, like botulinum neurotoxin A, inhibits insulin secretion from HIT-T15 cells. Mol. Endocrinol.12, 1060–1070 (1998). CASPubMed Google Scholar