The septin CDCrel-1 binds syntaxin and inhibits exocytosis (original) (raw)

References

  1. Rothman, J. & Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4, 220–233 (1994).
    Article CAS Google Scholar
  2. Hanson, P., Heuser, J. & Jahn, R. Neurotransmitter release - four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310– 315 (1997).
    Article CAS Google Scholar
  3. Weis, W. & Scheller, R. SNARE the rod, coil the complex. Nature 395, 328–329 (1998).
    Article CAS Google Scholar
  4. Sutton, R., Fasshauer, D., Jahn, R. & Brunger, A. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).
    Article CAS Google Scholar
  5. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).
    Article CAS Google Scholar
  6. Otto, H., Hanson, P. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA 94, 6197–6201 (1997).
    Article CAS Google Scholar
  7. Honer, W., Hu, L. & Davies, P. Human synaptic proteins with a heterogeneous distribution in cerebellum and visual cortex. Brain Res. 609, 9– 20 (1993).
    Article CAS Google Scholar
  8. Honer, W. et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78, 99–110 (1997).
    Article CAS Google Scholar
  9. Caltagarone, J., Rhodes, J., Honer, W. & Bowser, R. Localization of a novel septin protein, hCDCrel-1, in neurons of the human brain. Neuroreport 9, 2907–2912 (1998).
    Article CAS Google Scholar
  10. Hartwell, L. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276 (1971).
    Article CAS Google Scholar
  11. Byers, B. & Goetsch, L. Loss of the filamentous ring in cytokinesis-defective mutants of budding yeast. J. Cell Biol. 70, 35 (1976).
    Google Scholar
  12. Haarer, B. K. & Pringle, J. R. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell. Biol. 7, 3678–3687 (1987).
    Article CAS Google Scholar
  13. Kim, H. B., Haarer, B. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112, 535–544 (1991).
    Article CAS Google Scholar
  14. Ford, S. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Devel. Genet. 12, 281–292 (1991).
    Article CAS Google Scholar
  15. Sanders, S. L. & Field, C. M. Septins in common? Curr. Biol. 4, 907–910 (1994).
    Article CAS Google Scholar
  16. Longtine, M. S. et al. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8, 106–119 (1996).
    Article CAS Google Scholar
  17. Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994).
    Article CAS Google Scholar
  18. Fares, H., Peifer, M. & Pringle, J. R. Localization and possible functions of Drosophila septins. Mol. Biol. Cell 6, 1843– 1859 (1995).
    Article CAS Google Scholar
  19. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605– 616 (1996).
    Article CAS Google Scholar
  20. Kumar, S., Tomooka, Y. & Noda, M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Comm. 185, 1155–1161 (1992).
    Article CAS Google Scholar
  21. Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Devel. 11, 1535–1547 (1997).
    Article CAS Google Scholar
  22. Zieger, B., Hashimoto, Y. & Ware, J. Alternative expression of platelet glycoprotein Ibbeta mRNA from an adjacent 5´ gene with an imperfect polyadenylation signal sequence. J. Clin. Invest. 99, 520– 525 (1997).
    Article CAS Google Scholar
  23. McKie, J. M., Sutherland, H. F., Harvey, E., Kim, U.-J. & Scambler, P. J. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11. Hum. Genet. 101, 6–12 ( 1997).
    Article CAS Google Scholar
  24. Xie, H., Howard, J., Surka, M. & Trimble, W. Characterization of the mammalian septin H5: Distinct properties of cytoskeletal and membrane association from other mammalian septins. Cell Motil. Cytoskel. (in press).
  25. Huttner, W., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374– 1388 (1983).
    Article CAS Google Scholar
  26. Wheeler, M. et al. Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinology 137, 1340–1348 (1996).
    Article CAS Google Scholar
  27. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).
    Article CAS Google Scholar
  28. Walch-Solimena, C. et al. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J. Cell Biol. 128, 637–645 (1995).
    Article CAS Google Scholar
  29. Hsu, S.-C. et al. Subunit composition, protein interactions and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 ( 1998).
    Article CAS Google Scholar
  30. Bowser, R., Muller, H., Govindan, B. & Novick, P. Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J. Cell Biol. 118, 1041–1056 (1992).
    Article CAS Google Scholar
  31. Hsu, S. et al. The mammalian brain rsec6/8 complex. Neuron 17, 1209–1219 (1996).
    Article CAS Google Scholar
  32. Landis, D., Hall, A., Weinstein, L. & Reese, T. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201–209 (1988).
    Article CAS Google Scholar
  33. Hirokawa, N., Sobue, K., Kanda, K., Harada, A. & Yorifuji, H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 108, 111–126 (1989).
    Article CAS Google Scholar
  34. Chandler, D. & Heuser, J. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86, 666–674 (1980).
    Article CAS Google Scholar
  35. Monck, J. & Fernandez, J. The exocytic fusion pore and neurotransmitter release. Neuron 12, 707– 716 (1994).
    Article CAS Google Scholar
  36. Burgess, R., Deitcher, D. & Schwarz, T. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J. Cell Biol. 138, 861–875 (1997).
    Article CAS Google Scholar
  37. Byers, B. in The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance (eds. Strathern, J., Jones, E. & Broach, J.) 59– 96 (Cold Spring Harbor Lab Press, Cold Spring Harbor, New York, 1981).
    Google Scholar
  38. Gaisano, H. et al. Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol. Biol. Cell 7, 2019–2027 (1996).
    Article CAS Google Scholar
  39. Gaisano, H. Y., Sheu, L., Foskett, J. K. & Trimble, W. S. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform-2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J. Biol. Chem. 269, 17062–17066 (1994).
    CAS PubMed Google Scholar
  40. Huang, X. et al. Truncated SNAP-25, like botulinum neurotoxin A, inhibits insulin secretion from HIT-T15 cells. Mol. Endocrinol. 12, 1060–1070 (1998).
    CAS PubMed Google Scholar

Download references