Inhibitory control of neostriatal projection neurons by GABAergic interneurons (original) (raw)
References
Bolam, J. P. & Bennett, B. D. in Molecular and Cellular Mechanisms of Neostriatal Function (eds. Marjorie, A., Ariano, M. A. & Surmeier, D. J.) 1–2 (Springer, Heidelberg, 1993). Google Scholar
Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol. 12 Integrated Systems of the CNS (eds. Swanson, L. W., Björklund, A. & Hökfelt, T.) 371–468 (Elsevier Science B.V., Amsterdam, 1996). Google Scholar
Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci.16, 2397–2410 (1996). ArticleCAS Google Scholar
Wilson, C. J., Chang, H. T. & Kitai, S. T. Origins of post synaptic potentials evoked in spiny neostriatal projection neurons by thalamic stimulation in the rat. Exp. Brain Res.51, 217–226 (1983). CASPubMed Google Scholar
Wilson, C. J. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S. F.) 141–171 (Academic, San Diego, 1992). Book Google Scholar
Lighthall, J. W., Park, M. R. & Kitai, S. T. Inhibition in slices of rat neostriatum. Brain Res.212, 182–187 (1981). ArticleCAS Google Scholar
Lighthall, J. W. & Kitai, S. T. A short duration GABAergic inhibition in identified neostriatal medium spiny neurons: in vitro slice study. Brain Res. Bull.11, 103–110 (1983). ArticleCAS Google Scholar
Calabresi, P., Mercuri, N. B., Stefani, A. & Bernardi, G. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J. Neurophysiol.63, 651–662 (1990). ArticleCAS Google Scholar
Kita, H. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience70, 925–940 ( 1996). ArticleCAS Google Scholar
Nisenbaum, E. S. & Berger, T. W. Functionally distinct subpopulations of striatal neurons are differentially regulated by GABAergic and dopaminergic inputs—I. In vivo analysis. Neuroscience48, 561–578 (1992). ArticleCAS Google Scholar
Yoshida, M., Nagatsuka, Y., Muramatsu, S. & Niijima, K. Differential roles of the caudate nucleus and putamen in motor behavior of the cat as investigated by local injection of GABA antagonists. Neurosci. Res.10, 34–51 (1991). ArticleCAS Google Scholar
Yamada, H., Fujimoto, K. & Yoshida, M. Neuronal mechanism underlying dystonia induced by bicuculline injection into the putamen of the cat. Brain Res.677 , 333–336 (1995). ArticleCAS Google Scholar
Wilson, C. J. & Groves, P. M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J. Comp. Neurol.194, 599–615 (1980). ArticleCAS Google Scholar
Jaeger, D., Kita, H. & Wilson, C. J. Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J. Neurophysiol.72, 1–4 (1994). Article Google Scholar
Kita, H. GABAergic circuits of the striatum. Prog. Brain Res.99, 51–72 (1993). ArticleCAS Google Scholar
Dodt, H. U. & Zieglgansberger, W. Visualizing unstained neurons in living brain slices by infrared DIC—videomicroscopy. Brain Res.537, 333–336 (1990). ArticleCAS Google Scholar
Kawaguchi, Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci.13, 4908–4923 (1993). ArticleCAS Google Scholar
Miles, R. & Poncer, J. C. Paired recordings from neurones. Curr. Opin. Neurobiol.6, 387– 394 (1996). ArticleCAS Google Scholar
Kita, T., Kita, H. & Kitai, S. T. Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Res.300, 129–139 (1984). ArticleCAS Google Scholar
Kita, H., Kita, T. & Kitai, S. T. Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp. Brain. Res.60, 54–62 (1985). CASPubMed Google Scholar
Kawaguchi, Y., Wilson, C. J. & Emson, P. C. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol.62, 1052– 1068 (1989). ArticleCAS Google Scholar
Nisenbaum, E. S., Xu, Z. C. & Wilson, C. J. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J. Neurophysiol.71, 1174–1189 (1994). ArticleCAS Google Scholar
Tepper, J. M. & Trent, F. In vivo studies of the postnatal development of rat neostriatal neurons. Prog. Brain Res.99, 35–50 (1993). ArticleCAS Google Scholar
Tepper, J. M., Sharpe, N. A., Koós, T. Z. & Trent, F. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev. Neurosci.20 , 125–145 (1998). ArticleCAS Google Scholar
Kawaguchi, Y., Wilson, C. J., Augood, S. J. & Emson, P. C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci.18, 527– 535 (1995). ArticleCAS Google Scholar
Kita, H., Kosaka, T. & Heizmann, C. W. Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res.536, 1–15 (1990). ArticleCAS Google Scholar
Bennett, B. D. & Bolam, J. P. Synaptic input and output of parvalbumin immunoreactive neurons in the neostriatum of the rat. Neuroscience62, 707– 719 (1994). ArticleCAS Google Scholar
Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex Cereb. Cortex7, 476–486 (1997). ArticleCAS Google Scholar
Wickens, J. R., Kötter, R. & Alexander, M. E. Effects of local connectivity on striatal function: stimulation and analysis of a model. Synapse20, 281–298 (1995). ArticleCAS Google Scholar
Groves, P. M. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res.286, 109–132 (1983). ArticleCAS Google Scholar
Rinzel, J., Terman, D., Wang, X. & Ermentrout, B. Propagating activity patterns in large-scale inhibitory neuronal networks. Science279, 1351–1355 ( 1998). ArticleCAS Google Scholar
Whittington, M. A., Traub, R. D. & Jefferys, J. G. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature373, 612–615 (1995). ArticleCAS Google Scholar
Parthasarathy, H. B. & Graybiel, A. M. Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the Squirrel monkey. J. Neurosci.17, 2477–2491 (1997). ArticleCAS Google Scholar
Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus6, 347–470 (1996). ArticleCAS Google Scholar
Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature378, 75–78 (1995). ArticleCAS Google Scholar
Xiang, Z., Huguenard, J. R. & Prince, D. A. Cholinergic switching within neocortical inhibitory networks. Science281, 985– 988 (1998). ArticleCAS Google Scholar
Lenz, S., Perney, T. M., Qin, Y., Robbins, E. & Chesselet, M. F. GABA-ergic interneurons of the striatum express the Shaw-like potassium channel, Kv3.1 Synapse18, 55–66 (1994). ArticleCAS Google Scholar
Nicola, S. M. & Malenka, R. C. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci.17, 5697– 5710 (1997). ArticleCAS Google Scholar
Pennartz, C. M. A., Dolleman-Van Der Weel, M. J., Kitai, S. T. & Da Silva, F. H. L. Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro . J. Neurophysiol.67, 1325– 1334 (1992). ArticleCAS Google Scholar
Chang, H. T. & Kita, H. Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res.574, 307–311 ( 1992). ArticleCAS Google Scholar
Bevan, M. D., Booth, P. A. C., Eaton, S. A. & Bolam, J. P. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J. Neurosci.18, 9438–9452 (1998). ArticleCAS Google Scholar
Jiang, Z. G. & North, R. A. Membrane properties and synaptic responses of rat striatal neurones in vitro. J. Physiol. (Lond.)443, 533–553 ( 1991). ArticleCAS Google Scholar
Barry, P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Methods51, 107–116 ( 1994). ArticleCAS Google Scholar
Ng, B. & Barry, P. H. The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J. Neurosci. Methods56, 37–41 (1995). ArticleCAS Google Scholar
Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods25, 1– 11 (1988). ArticleCAS Google Scholar
Oorschot, D. E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol.366, 580–599 (1996). ArticleCAS Google Scholar
Kincaid, A. E., Zheng, T. & Wilson, C. J. Connectivity and convergence of single corticostriatal axons. J. Neurosci.18, 4722– 4731 (1998). ArticleCAS Google Scholar
Plenz, D. & Kitai, S.T. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci.18, 266–283 (1998). ArticleCAS Google Scholar