MAML1, a human homologue of Drosophila Mastermind, is a transcriptional co-activator for NOTCH receptors (original) (raw)

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).
    Article CAS PubMed Google Scholar
  2. Kopan, R., Schroeter, E.H., Weintraub, H. & Nye, J.S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl Acad. Sci. USA 93, 1683–1688 ( 1996).
    Article CAS PubMed PubMed Central Google Scholar
  3. Tamura, K. et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J κ/Su(H). Curr. Biol. 5, 1416–1423 (1995).
    Article CAS PubMed Google Scholar
  4. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 ( 1995).
    Article CAS PubMed Google Scholar
  5. Smoller, D. et al. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 4, 1688–1700 (1990).
    Article CAS PubMed Google Scholar
  6. Bettler, D., Pearson, S. & Yedvobnick, B. The nuclear protein encoded by the Drosophila neurogenic gene mastermind is widely expressed and associates with specific chromosomal regions. Genetics 143, 859– 875 (1996).
    CAS PubMed PubMed Central Google Scholar
  7. Yedvobnick, B., Smoller, D., Young, P. & Mills, D. Molecular analysis of the neurogenic locus mastermind of Drosophila melanogaster . Genetics 118, 483–497 (1988).
    CAS PubMed PubMed Central Google Scholar
  8. Lehmann, R.F., Jimenez, W., Dietrich, U. & Campos-Ortega, J.A. On the phenotype and development of mutants of early neurogenesis in D. melanogaster . Wilhelm Roux's Arch. Dev. Biol. 192, 62 –74 (1983).
    Article Google Scholar
  9. Aster, J. et al. Functional analysis of the TAN-1 gene, a human homolog of Drosophila notch. Cold Spring Harb. Symp. Quant. Biol. 59, 125–136 (1994).
    Article CAS PubMed Google Scholar
  10. Roehl, H., Bosenberg, M., Blelloch, R. & Kimble, J. Roles of the RAM and ANK domains in signaling by the C. elegans GLP-1 receptor . EMBO J. 15, 7002–7012 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  11. Rebay, I., Fortini, M.E. & Artavanis-Tsakonas, S. Analysis of phenotypic abnormalities and cell fate changes caused by dominant activated and dominant negative forms of the Notch receptor in Drosophila development. C. R. Acad. Sci. III 316, 1097–1123 ( 1993).
    CAS PubMed Google Scholar
  12. Helms, W. et al. Engineered truncations in the Drosophila mastermind protein disrupt Notch pathway function. Dev. Biol. 215, 358–374 (1999).
    Article CAS PubMed Google Scholar
  13. Hsieh, J.J., Zhou, S., Chen, L., Young, D.B. & Hayward, S.D. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl Acad. Sci. USA 96, 23–28 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Kao, H.Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Taniguchi, Y., Furukawa, T., Tun, T., Han, H. & Honjo, T. LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol. Cell. Biol. 18, 644–654 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  16. Zhou, S. et al. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Mol. Cell. Biol. 20, 2400–2410 ( 2000).
    Article CAS PubMed PubMed Central Google Scholar
  17. Matsuno, K., Diederich, R.J., Go, M.J., Blaumueller, C.M. & Artavanis-Tsakonas, S. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121, 2633– 2644 (1995).
    CAS PubMed Google Scholar
  18. Matsuno, K. et al. Human deltex is a conserved regulator of Notch signalling . Nature Genet. 19, 74– 78 (1998).
    Article CAS PubMed Google Scholar
  19. Petcherski, A. & Kimble, J. LAG-3 is a putative trancriptional activator in the C. elegans Notch pathway. Nature 405, 364–368 ( 2000).
    Article CAS PubMed Google Scholar
  20. LaMorte, V.J., Dyck, J.A., Ochs, R.L. & Evans, R.M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA 95, 4991–4996 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  21. Doucas, V., Tini, M., Egan, D.A. & Evans, R.M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl Acad. Sci. USA 96, 2627–2632 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  22. Xu, T., Rebay, I., Fleming, R.J., Scottgale, T.N. & Artavanis-Tsakonas, S. The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis . Genes Dev. 4, 464–475 (1990).
    Article CAS PubMed Google Scholar
  23. Go, M.J. & Artavanis-Tsakonas, S. A genetic screen for novel components of the notch signaling pathway during Drosophila bristle development. Genetics 150, 211– 220 (1998).
    CAS PubMed PubMed Central Google Scholar
  24. Pear, W.S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780– 3792 (1998).
    CAS PubMed Google Scholar
  25. Hawley, R.G., Lieu, F.H., Fong, A.Z. & Hawley, T.S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).
    CAS PubMed Google Scholar
  26. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299 –308 (1999).
    Article CAS PubMed Google Scholar
  27. Aster, J.C. et al. Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jκ or nuclear localization sequences retain the ability to associate with RBP-Jκ and activate transcription. J. Biol. Chem. 272, 11336–11343 ( 1997).
    Article CAS PubMed Google Scholar
  28. Henkel, T., Ling, P.D., Hayward, S.D. & Peterson, M.G. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein Jκ. Science 265, 92– 95 (1994).
    Article CAS PubMed Google Scholar

Download references