Disruption of T cell signaling networks and development by Grb2 haploid insufficiency (original) (raw)

References

  1. Clements, J., Boerth, N., Lee, J. & Koretzky, G. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu. Rev. Immunol. 17, 89–108 (1999).
    Article CAS Google Scholar
  2. Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation . Immunity 9, 239–246 (1998).
    Article CAS Google Scholar
  3. Lin, J., Weiss, A. & Finco, T. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274 , 28861–28864 (1999).
    Article CAS Google Scholar
  4. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 ( 1998).
    Article CAS Google Scholar
  5. Liu, S., Fang, N., Koretzky, G. & McGlade, C. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).
    Article CAS Google Scholar
  6. Asada, H. et al. Grf40, a novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med. 189, 1383–1390 (1999).
    Article CAS Google Scholar
  7. Law, C.-L. et al. GrpL, a GRB2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J. Exp. Med. 189, 1243–1253 ( 1999).
    Article CAS Google Scholar
  8. Sieh, M., Batzer, A., Schlessinger, J. & Weiss, A. Grb2 and phospholipase C-γ 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell. Biol. 14, 4435–4442 (1994).
    Article CAS Google Scholar
  9. Buday, L., Egan, S. E., Viciana, P. R., Cantrell, D. A. & Downward, J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem. 269, 9019–9023 (1994).
    CAS PubMed Google Scholar
  10. Trub, T., Frantz, J. D., Miyazaki, M., Band, H. & Shoelson, S. E. The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem. 272, 894–902 (1997).
    Article CAS Google Scholar
  11. Ebinu, J. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).
    Article CAS Google Scholar
  12. Ebinu, J. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 ( 2000).
    CAS PubMed Google Scholar
  13. Dower, N. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1, 317– 321 (2000).
    Article CAS Google Scholar
  14. Izquierdo, M., Leevers, S. J., Marshall, C. J. & Cantrell, D. p21ras couples the T cell antigen receptor to extracellular signal-regulated kinase 2 in T lymphocytes. J. Exp. Med. 178, 1199–1208 (1993).
    Article CAS Google Scholar
  15. Rayter, S., Woodrow, M., Lucas, S. C., Cantrell, D. & Downward, J. p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J. 11, 4549–4556 (1992).
    Article CAS Google Scholar
  16. Nimnual, A. S., Yatsula, B. A. & Bar-Sagi, D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279, 560– 563 (1998).
    Article CAS Google Scholar
  17. Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).
    Article CAS Google Scholar
  18. Jacinto, E., Werlen, G. & Karin, M. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity 8, 31–41 (1998).
    Article CAS Google Scholar
  19. Genot, E., Cleverley, S., Henning, S. & Cantrell, D. Multiple p21ras effector pathways regulate nuclear factor of activated T cells . EMBO J. 15, 3923–3933 (1996).
    Article CAS Google Scholar
  20. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 ( 1999).
    Article CAS Google Scholar
  21. Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl Acad. Sci. USA 93, 14747– 14752 (1997).
    Article Google Scholar
  22. Love, P. & Shores, E. ITAM multiplicity and thymocyte selection: how low can you go? Immunity 12, 591– 597 (2000).
    Article CAS Google Scholar
  23. Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science 286, 1374– 1377 (1999).
    Article CAS Google Scholar
  24. O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection . Eur. J. Immunol. 26, 2350– 2355 (1996).
    Article CAS Google Scholar
  25. Swan, K. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276– 285 (1995).
    Article CAS Google Scholar
  26. Alberola-Ila, J., Forbush, K., Seger, R., Krebs, E. & Perlmutter, R. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620– 623 (1995).
    Article CAS Google Scholar
  27. Alberola-Ila, J., Hogquist, K., Swan, K., Bevan, M. & Perlmutter, R. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9– 18 (1996).
    Article CAS Google Scholar
  28. Rincon, M. et al. The JNK pathway regulates the in vivo deletion of immature CD4+CD8+ thymocytes. J. Exp. Med. 188, 1817–1830 ( 1998).
    Article CAS Google Scholar
  29. Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 11, 116–125 (1999).
    Article Google Scholar
  30. Sugawara, T., Moriguchi, T., Nishida, E. & Takahama, Y. Differential roles of Erk and p38 MAPK kinase pathways in positive and negative selection of T lymphocytes. Immunity 9, 565–574 (1998).
    Article CAS Google Scholar
  31. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 ( 1998).
    Article CAS Google Scholar
  32. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91– 94 (2000).
    Article CAS Google Scholar
  33. Cheng, A. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793 –803 (1998).
    Article CAS Google Scholar
  34. Dumont, F., Staruch, M., Fischer, P., DaSilva, C. & Camacho, R. Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production. J. Immunol. 160, 2579–2589 (1998).
    CAS PubMed Google Scholar
  35. Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727– 736 (1994).
    Article Google Scholar
  36. Weiss, L. et al. Regulation of c-Jun NH2-terminal kinase (Jnk) gene expression during T cell activation. J. Exp. Med. 191, 139–145 (2000).
    Article CAS Google Scholar
  37. Kisielow, P., Teh, H. S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730– 733 (1988).
    Article CAS Google Scholar
  38. Murphy, K., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720– 1723 (1990).
    Article CAS Google Scholar
  39. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742– 746 (1988).
    Article CAS Google Scholar
  40. Shi, Y. et al. In vivo administration of monoclonal antibodies to the CD3 T cell receptor complex induces cell death (apoptosis) in immature thymocytes . J. Immunol. 146, 3340– 3346 (1991).
    CAS PubMed Google Scholar
  41. Kishimoto, H., Surh, C. & Sprent, J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med. 187, 1427– 1438 (1998).
    Article CAS Google Scholar
  42. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).
    Article CAS Google Scholar
  43. Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 ( 1993).
    Article CAS Google Scholar
  44. Taylor, S. & Shalloway, D. Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621– 1627 (1996).
    Article CAS Google Scholar
  45. Genot, E. & Cantrell, D. Ras regulation and function in lymphocytes. Curr. Opin. Immunol. 12, 289 –294 (2000).
    Article CAS Google Scholar
  46. Denny, M., Kaufman, H., Chan, A. & Straus, D. The Lck SH3 domain is required for activation of the MAP kinase pathway, but not the initiation of T cell antigen receptor signaling. J. Biol. Chem. 274, 5146–5152 (1999).
    Article CAS Google Scholar
  47. Faris, M., Kokot, N., Lee, L. & Nel, A. Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in Jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J. Biol. Chem. 271, 27366– 27373 (1996).
    Article CAS Google Scholar
  48. Simon, M. A., Dodson, G. S. & Rubin, G. M. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73, 169–177 (1993).
    Article CAS Google Scholar
  49. Love, P., Lee, J. & Shores, E. Critical relationship between TCR signaling potential and TCR affinity during thymocyte selection. J. Immunol. 165, 3080 –3087 (2000).
    Article CAS Google Scholar
  50. Schaeffer, E. & Schwartzberg, P. Tec family kinases in lymphocyte signaling and function. Curr. Opin. Immunol. 12, 282–288 (2000).
    Article CAS Google Scholar
  51. Holsinger, L., Spencer, D., Austin, D., Schreiber, S. & Crabtree, G. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl Acad. Sci. USA 92, 9810–9814 (1995).
    Article CAS Google Scholar
  52. Zhang, W. et al. Association of Grb2, Gads and phospholipase Cγ1 with phosphorylated LAT tyrosine residues: effect of tyrosine mutations on T cell antigen receptor-mediated signaling. J. Biol. Chem. 275, 23355– 23361 (2000).
    Article CAS Google Scholar
  53. Pomerance, M. et al. Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor. J. Biol. Chem. 273, 24301–24304 (1998).
    Article CAS Google Scholar
  54. Liou, J. et al. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. Immunity 12, 399– 408 (2000).
    Article CAS Google Scholar
  55. Donovan, J., Wange, R., Langdon, W. & Samelson, L. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J. Biol. Chem. 269, 22921–22924 (1994).
    CAS PubMed Google Scholar
  56. Ando, A. et al. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J. 13, 3033–3038 (1994).
    Article CAS Google Scholar
  57. Kharbanda, S. et al. Stimulation of human monocytes with macrophage colony stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl Acad. Sci. USA 92, 6132–6136 (1995).
    Article CAS Google Scholar
  58. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. & Greenberg, M. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326 –1331 (1995).
    Article CAS Google Scholar
  59. Feig, L. & Cooper, G. Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins . Mol. Cell. Biol. 8, 3235– 3243 (1988).
    Article CAS Google Scholar

Download references