Disruption of T cell signaling networks and development by Grb2 haploid insufficiency (original) (raw)
References
Clements, J., Boerth, N., Lee, J. & Koretzky, G. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu. Rev. Immunol.17, 89–108 (1999). ArticleCAS Google Scholar
Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation . Immunity9, 239–246 (1998). ArticleCAS Google Scholar
Lin, J., Weiss, A. & Finco, T. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem.274 , 28861–28864 (1999). ArticleCAS Google Scholar
Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell92, 83–92 ( 1998). ArticleCAS Google Scholar
Liu, S., Fang, N., Koretzky, G. & McGlade, C. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol.9, 67–75 (1999). ArticleCAS Google Scholar
Asada, H. et al. Grf40, a novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med.189, 1383–1390 (1999). ArticleCAS Google Scholar
Law, C.-L. et al. GrpL, a GRB2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J. Exp. Med.189, 1243–1253 ( 1999). ArticleCAS Google Scholar
Sieh, M., Batzer, A., Schlessinger, J. & Weiss, A. Grb2 and phospholipase C-γ 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell. Biol.14, 4435–4442 (1994). ArticleCAS Google Scholar
Buday, L., Egan, S. E., Viciana, P. R., Cantrell, D. A. & Downward, J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem.269, 9019–9023 (1994). CASPubMed Google Scholar
Trub, T., Frantz, J. D., Miyazaki, M., Band, H. & Shoelson, S. E. The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem.272, 894–902 (1997). ArticleCAS Google Scholar
Ebinu, J. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science280, 1082–1086 (1998). ArticleCAS Google Scholar
Ebinu, J. et al. RasGRP links T-cell receptor signaling to Ras. Blood95, 3199–3203 ( 2000). CASPubMed Google Scholar
Dower, N. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol.1, 317– 321 (2000). ArticleCAS Google Scholar
Izquierdo, M., Leevers, S. J., Marshall, C. J. & Cantrell, D. p21ras couples the T cell antigen receptor to extracellular signal-regulated kinase 2 in T lymphocytes. J. Exp. Med.178, 1199–1208 (1993). ArticleCAS Google Scholar
Rayter, S., Woodrow, M., Lucas, S. C., Cantrell, D. & Downward, J. p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J.11, 4549–4556 (1992). ArticleCAS Google Scholar
Nimnual, A. S., Yatsula, B. A. & Bar-Sagi, D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science279, 560– 563 (1998). ArticleCAS Google Scholar
Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell81, 1147–1157 (1995). ArticleCAS Google Scholar
Jacinto, E., Werlen, G. & Karin, M. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity8, 31–41 (1998). ArticleCAS Google Scholar
Genot, E., Cleverley, S., Henning, S. & Cantrell, D. Multiple p21ras effector pathways regulate nuclear factor of activated T cells . EMBO J.15, 3923–3933 (1996). ArticleCAS Google Scholar
Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol.17, 829–874 ( 1999). ArticleCAS Google Scholar
Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl Acad. Sci. USA93, 14747– 14752 (1997). Article Google Scholar
Love, P. & Shores, E. ITAM multiplicity and thymocyte selection: how low can you go? Immunity12, 591– 597 (2000). ArticleCAS Google Scholar
Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science286, 1374– 1377 (1999). ArticleCAS Google Scholar
O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection . Eur. J. Immunol.26, 2350– 2355 (1996). ArticleCAS Google Scholar
Swan, K. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J.14, 276– 285 (1995). ArticleCAS Google Scholar
Alberola-Ila, J., Forbush, K., Seger, R., Krebs, E. & Perlmutter, R. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature373, 620– 623 (1995). ArticleCAS Google Scholar
Alberola-Ila, J., Hogquist, K., Swan, K., Bevan, M. & Perlmutter, R. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med.184, 9– 18 (1996). ArticleCAS Google Scholar
Rincon, M. et al. The JNK pathway regulates the in vivo deletion of immature CD4+CD8+ thymocytes. J. Exp. Med.188, 1817–1830 ( 1998). ArticleCAS Google Scholar
Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol.11, 116–125 (1999). Article Google Scholar
Sugawara, T., Moriguchi, T., Nishida, E. & Takahama, Y. Differential roles of Erk and p38 MAPK kinase pathways in positive and negative selection of T lymphocytes. Immunity9, 565–574 (1998). ArticleCAS Google Scholar
Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science282, 2092–2095 ( 1998). ArticleCAS Google Scholar
Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature405, 91– 94 (2000). ArticleCAS Google Scholar
Cheng, A. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell95, 793 –803 (1998). ArticleCAS Google Scholar
Dumont, F., Staruch, M., Fischer, P., DaSilva, C. & Camacho, R. Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production. J. Immunol.160, 2579–2589 (1998). CASPubMed Google Scholar
Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell77, 727– 736 (1994). Article Google Scholar
Weiss, L. et al. Regulation of c-Jun NH2-terminal kinase (Jnk) gene expression during T cell activation. J. Exp. Med.191, 139–145 (2000). ArticleCAS Google Scholar
Kisielow, P., Teh, H. S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature335, 730– 733 (1988). ArticleCAS Google Scholar
Murphy, K., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science250, 1720– 1723 (1990). ArticleCAS Google Scholar
Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature333, 742– 746 (1988). ArticleCAS Google Scholar
Shi, Y. et al. In vivo administration of monoclonal antibodies to the CD3 T cell receptor complex induces cell death (apoptosis) in immature thymocytes . J. Immunol.146, 3340– 3346 (1991). CASPubMed Google Scholar
Kishimoto, H., Surh, C. & Sprent, J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med.187, 1427– 1438 (1998). ArticleCAS Google Scholar
Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med.185, 263–271 (1997). ArticleCAS Google Scholar
Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature363, 45–51 ( 1993). ArticleCAS Google Scholar
Taylor, S. & Shalloway, D. Cell cycle-dependent activation of Ras. Curr. Biol.6, 1621– 1627 (1996). ArticleCAS Google Scholar
Genot, E. & Cantrell, D. Ras regulation and function in lymphocytes. Curr. Opin. Immunol.12, 289 –294 (2000). ArticleCAS Google Scholar
Denny, M., Kaufman, H., Chan, A. & Straus, D. The Lck SH3 domain is required for activation of the MAP kinase pathway, but not the initiation of T cell antigen receptor signaling. J. Biol. Chem.274, 5146–5152 (1999). ArticleCAS Google Scholar
Faris, M., Kokot, N., Lee, L. & Nel, A. Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in Jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J. Biol. Chem.271, 27366– 27373 (1996). ArticleCAS Google Scholar
Simon, M. A., Dodson, G. S. & Rubin, G. M. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell73, 169–177 (1993). ArticleCAS Google Scholar
Love, P., Lee, J. & Shores, E. Critical relationship between TCR signaling potential and TCR affinity during thymocyte selection. J. Immunol.165, 3080 –3087 (2000). ArticleCAS Google Scholar
Schaeffer, E. & Schwartzberg, P. Tec family kinases in lymphocyte signaling and function. Curr. Opin. Immunol.12, 282–288 (2000). ArticleCAS Google Scholar
Holsinger, L., Spencer, D., Austin, D., Schreiber, S. & Crabtree, G. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl Acad. Sci. USA92, 9810–9814 (1995). ArticleCAS Google Scholar
Zhang, W. et al. Association of Grb2, Gads and phospholipase Cγ1 with phosphorylated LAT tyrosine residues: effect of tyrosine mutations on T cell antigen receptor-mediated signaling. J. Biol. Chem.275, 23355– 23361 (2000). ArticleCAS Google Scholar
Pomerance, M. et al. Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor. J. Biol. Chem.273, 24301–24304 (1998). ArticleCAS Google Scholar
Liou, J. et al. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. Immunity12, 399– 408 (2000). ArticleCAS Google Scholar
Donovan, J., Wange, R., Langdon, W. & Samelson, L. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J. Biol. Chem.269, 22921–22924 (1994). CASPubMed Google Scholar
Ando, A. et al. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J.13, 3033–3038 (1994). ArticleCAS Google Scholar
Kharbanda, S. et al. Stimulation of human monocytes with macrophage colony stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl Acad. Sci. USA92, 6132–6136 (1995). ArticleCAS Google Scholar
Xia, Z., Dickens, M., Raingeaud, J., Davis, R. & Greenberg, M. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270, 1326 –1331 (1995). ArticleCAS Google Scholar
Feig, L. & Cooper, G. Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins . Mol. Cell. Biol.8, 3235– 3243 (1988). ArticleCAS Google Scholar