Signaling through OX40 (CD134) breaks peripheral T-cell tolerance (original) (raw)

References

  1. Dresser, D.W. & Mitchison, N.A. The mechanism of immunological paralysis. Adv. Immunol. 8, 129–181 (1968).
    Article CAS Google Scholar
  2. Bretscher, P. & Cohn, M. A theory of self-nonself discrimination. Science 169, 1042–1049 (1970).
    Article CAS Google Scholar
  3. Jenkins, M.K. & Schwartz, R.H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).
    Article CAS Google Scholar
  4. Schwartz, R.H. Acquisition of immunologic self-tolerance. Cell 57, 1073–1081 (1989).
    Article CAS Google Scholar
  5. DeSilva, D.R., Urdahl, K.B. & Jenkins, M.K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol. 147, 3261–3267 (1991).
    CAS PubMed Google Scholar
  6. Schwartz, R.H. T cell clonal anergy. Curr. Opin. Immunol. 9, 351–357 (1997).
    Article CAS Google Scholar
  7. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).
    Article CAS Google Scholar
  8. Boussiotis, V.A., Freeman, G.J., Gray, G., Gribben, J. & Nadler, L.M. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. J. Exp. Med. 178, 1753–1763 (1993).
    Article CAS Google Scholar
  9. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).
    Article CAS Google Scholar
  10. Chambers, C.A., Sullivan, T.J. & Allison, J.P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885–895 (1997).
    Article CAS Google Scholar
  11. Sotomayor, E.M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).
    Article CAS Google Scholar
  12. Gramaglia, I., Weinberg, A.D., Lemon, M. & Croft, M. OX40 Ligand: A potent costimulatory molecule for sustaining primary CD4 T cell responses. J. Immunol. 161, 6510–6517 (1998).
    CAS PubMed Google Scholar
  13. Akiba, H. et al. CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J. Immunol. 162, 7058–7066 (1999).
    CAS PubMed Google Scholar
  14. Gramaglia, I. et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000).
    Article CAS Google Scholar
  15. Calderhead, D.M. et al. Cloning of mouse Ox40: A T-cell activation marker that may mediate T-B cell interactions. J. Immunol. 151, 5261–5271 (1993).
    CAS PubMed Google Scholar
  16. Godfrey, W.R., Fagnoni, F.F., Harara, M.A., Buck, D. & Engleman, E.G. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J. Exp. Med. 180, 757–762 (1994).
    Article CAS Google Scholar
  17. Kopf, M. et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).
    Article CAS Google Scholar
  18. Chen, A.I. et al. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11, 689–698 (1999).
    Article CAS Google Scholar
  19. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).
    Article CAS Google Scholar
  20. Maxwell, J., Weinberg, A.D., Prell, R.A. & Vella, A.T. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol. 164, 107–112 (2000).
    Article CAS Google Scholar
  21. Croft, M., Joseph, S.B. & Miner, K.T. Partial activation of naive CD4 T cells and tolerance induction in response to peptide presented by resting B cells. J. Immunol. 159, 3257–3265 (1997).
    CAS PubMed Google Scholar
  22. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA- based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40. (1998).
    Article CAS Google Scholar
  23. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).
    Article CAS Google Scholar
  24. Al-Shamkhani, A. et al. OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur. J. Immunol. 26, 1695–1699 (1996).
    Article CAS Google Scholar
  25. Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356 (1990).
    Article CAS Google Scholar
  26. Jenkins, M.K., Chen, C.A., Jung, G., Mueller, D.L. & Schwartz, R.H. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144, 16–22 (1990).
    CAS PubMed Google Scholar
  27. Ria, F., Chan, B.M., Scherer, M.T., Smith, J.A. & Gefter, M.L. Immunological activity of covalently linked T-cell epitopes. Nature 343, 381–383 (1990).
    Article CAS Google Scholar
  28. Romball, C.G. & Weigle, W.O. In vivo induction of tolerance in murine CD4+ cell subsets. J. Exp. Med. 178, 1637–1644 (1993).
    Article CAS Google Scholar
  29. Aichele, P., Brduscha-Riem, K., Zinkernagel, R.M., Hengartner, H. & Pircher, H. T cell priming versus T cell tolerance induced by synthetic peptides. J. Exp. Med. 182, 261–266 (1995).
    Article CAS Google Scholar
  30. Pape, K.A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M.K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).
    CAS PubMed Google Scholar
  31. Stuber, E., Neurath, M., Calderhead, D., Fell, H.P. & Strober, W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2, 507–521 (1995).
    Article CAS Google Scholar
  32. Weinberg, A.D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000).
    Article CAS Google Scholar
  33. Garza, K.M. et al. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J. Exp. Med. 191, 2021–2027 (2000).
    Article CAS Google Scholar
  34. Shrikant, P., Khoruts, A. & Mescher, M.F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11, 483–493 (1999).
    Article CAS Google Scholar
  35. Hurwitz, A.A., Yu, T.F., Leach, D.R. & Allison, J.P. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA 95, 10067–10071 (1998).
    Article CAS Google Scholar
  36. Leach, D.R., Krummel, M.F. & Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).
    Article CAS Google Scholar
  37. Schwartz, R.H. Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med. 184, 1–8 (1996).
    Article CAS Google Scholar
  38. Fields, P.E., Gajewski, T.F. & Fitch, F.W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276–1278 (1996).
    Article CAS Google Scholar
  39. Li, W., Whaley, C.D., Mondino, A. & Mueller, D.L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).
    Article CAS Google Scholar
  40. Kang, S.M. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134–1138 (1992).
    Article CAS Google Scholar
  41. Sundstedt, A. et al. In vivo anergized CD4+ T cells express perturbed AP-1 and NF-κB transcription factors. Proc. Natl. Acad. Sci. USA 93, 979–984 (1996).
    Article CAS Google Scholar
  42. Boussiotis, V.A. et al. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nature Med 6, 290–297 (2000).
    Article CAS Google Scholar
  43. Arch, R.H. & Thompson, C.B. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol. Cell. Biol. 18, 558–565 (1998).
    Article CAS Google Scholar
  44. Kawamata, S., Hori, T., Imura, A., Takaori-Kondo, A. & Uchiyama, T. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-κB activation. J. Biol. Chem. 273, 5808–5814 (1998).
    Article CAS Google Scholar

Download references