- Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55: 10–30.
Article PubMed Google Scholar
- Parkin DM, Bray FI, Devesa SS . Cancer burden in the year 2000. The global picture. Eur J Cancer 2001; 37 (Suppl 8): S4–66.
Article PubMed Google Scholar
- Pan S, Chen R, Brand RE, Hawley S, Tamura Y, Gafken PR et al. Multiplex targeted proteomic assay for biomarker detection in plasma: a pancreatic cancer biomarker case study. J Proteome Res 2012; 11: 1937–1948.
Article CAS PubMed PubMed Central Google Scholar
- Hocker JR, Mohammed A, Aston CE, Brewer M, Lightfoot SA, Rao CV et al. Mass profiling of serum to distinguish mice with pancreatic cancer induced by a transgenic kras mutation. Int J Cancer 2013; 133: 2662–2671.
CAS PubMed PubMed Central Google Scholar
- Li A, Yu J, Kim H, Wolfgang CL, Canto M, Hruban RH et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res 2013; 19: 3600–3610.
Article CAS PubMed PubMed Central Google Scholar
- Ren C, Chen H, Han C, Jin G, Wang D, Tang D . Detection and molecular analysis of circulating tumor cells for early diagnosis of pancreatic cancer. Med Hypotheses 2013; 80: 833–836.
Article CAS PubMed Google Scholar
- Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 25: 1960–1966.
Article CAS PubMed Google Scholar
- Kulke MH, Blaszkowsky LS, Ryan DP, Clark JW, Meyerhardt JA, Zhu AX et al. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J Clin Oncol 2007; 25: 4787–4792.
Article CAS PubMed Google Scholar
- Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevall A, Dadachova E et al. Nontoxic radioactive Listeriaat is a highly effective therapy against metastatic pancreatic cancer. Proc Natl Acad Sci USA 2013; 110: 8668–8673.
Article CAS PubMed PubMed Central Google Scholar
- Conroy T, Gavoille C, Adenis A . Metastatic pancreatic cancer: old drugs, new paradigms. Curr Opin Oncol 2011; 23: 390–395.
Article PubMed Google Scholar
- Muller SA, Tarantino I, Martin DJ, Schmied BM . Pancreatic surgery: beyond the traditional limits. Recent Results Cancer Res 2012; 196: 53–64.
Article PubMed Google Scholar
- Poruk KE, Firpo MA, Adler DG, Mulvihill SJ . Screening for pancreatic cancer: why, how, and who? Ann Surg 2013; 257: 17–26.
Article PubMed Google Scholar
- Wray CJ, Ahmad SA, Matthews JB, Lowy AM . Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology 2005; 128: 1626–1641.
Article PubMed Google Scholar
- Reddy S, Wolfgang CL . The role of surgery in the management of isolated metastases to the pancreas. Lancet Oncol 2009; 10: 287–293.
Article PubMed Google Scholar
- Cleary SP, Gryfe R, Guindi M, Greig P, Smith L, Mackenzie R et al. Prognostic factors in resected pancreatic adenocarcinoma: analysis of actual 5-year survivors. J Am Coll Surg 2004; 198: 722–731.
Article PubMed Google Scholar
- Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 2004; 64: 2634–2638.
Article CAS PubMed Google Scholar
- Brune KA, Lau B, Palmisano E, Canto M, Goggins MG, Hruban RH et al. Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst 2010; 102: 119–126.
Article PubMed PubMed Central Google Scholar
- Klein AP, Hruban RH, Brune KA, Petersen GM, Goggins M . Familial pancreatic cancer. Cancer J 2001; 7: 266–273.
CAS PubMed Google Scholar
- van der Heijden MS, Yeo CJ, Hruban RH, Kern SE . Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 2003; 63: 2585–2588.
CAS PubMed Google Scholar
- Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56: 5360–5364.
CAS PubMed Google Scholar
- Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009; 324: 217.
Article CAS PubMed PubMed Central Google Scholar
- Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012; 2: 41–46.
Article CAS PubMed Google Scholar
- Ryu B, Jones J, Blades NJ, Parmigiani G, Hollingsworth MA, Hruban RH et al. Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res 2002; 62: 819–826.
CAS PubMed Google Scholar
- Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, van Heek T, Ashfaq R, Meyer R et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 2002; 160: 1239–1249.
Article CAS PubMed PubMed Central Google Scholar
- Hidalgo M . Pancreatic cancer. N Engl J Med 2010; 362: 1605–1617.
Article CAS PubMed Google Scholar
- Weinstein IB . Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 2000; 21: 857–864.
Article CAS PubMed Google Scholar
- Dang CV . Links between metabolism and cancer. Genes Dev 2012; 26: 877–890.
Article CAS PubMed PubMed Central Google Scholar
- Weinstein IB, Joe A . Oncogene addiction. Cancer Res 2008; 68: 3077–3080 discussion 3080.
Article CAS PubMed Google Scholar
- Warburg O, Wind F, Negelein E . The metabolism of tumors in the body. J Gen Physiol 1927; 8: 519–530.
Article CAS PubMed PubMed Central Google Scholar
- Brahimi-Horn MC, Chiche J, Pouyssegur J . Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 2007; 19: 223–229.
Article CAS PubMed Google Scholar
- Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.
Article CAS PubMed Google Scholar
- Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.
Article CAS PubMed Google Scholar
- Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2013; 110: 3919–3924.
Article CAS PubMed PubMed Central Google Scholar
- Rong Y, Wu W, Ni X, Kuang T, Jin D, Wang D et al. Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol 2013; 34: 1523–1530.
Article CAS PubMed Google Scholar
- Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta LA et al. Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 2012; 11: 554–563.
Article CAS PubMed Google Scholar
- Mikuriya K, Kuramitsu Y, Ryozawa S, Fujimoto M, Mori S, Oka M et al. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol 2007; 30: 849–855.
CAS PubMed Google Scholar
- Ishihara H, Wang H, Drewes LR, Wollheim CB . Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest 1999; 104: 1621–1629.
Article CAS PubMed PubMed Central Google Scholar
- Zhou W, Capello M, Fredolini C, Piemonti L, Liotta LA, Novelli F et al. Proteomic analysis of pancreatic ductal adenocarcinoma cells reveals metabolic alterations. J Proteome Res 2011; 10: 1944–1952.
Article CAS PubMed Google Scholar
- Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang J, Chen J et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 2001; 61: 6548–6554.
CAS PubMed Google Scholar
- Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnqvist HJ, Larsson J . Pancreatic cancer is associated with impaired glucose metabolism. Eur J Surg 1993; 159: 101–107.
CAS PubMed Google Scholar
- Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG, Permert J et al. Excess glucose induces hypoxia-inducible factor-1alpha in pancreatic cancer cells and stimulates glucose metabolism and cell migration. Cancer Biol Ther 2013; 14: 428–435.
Article CAS PubMed PubMed Central Google Scholar
- Pouyssegur J, Dayan F, Mazure NM . Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006; 441: 437–443.
Article CAS PubMed Google Scholar
- Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E . Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 2006; 66: 632–637.
Article CAS PubMed Google Scholar
- Ota S, Geschwind JF, Buijs M, Wijlemans JW, Kwak BK, Ganapathy-Kanniappan S . Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer. Target Oncol 2013; 8: 145–151.
Article PubMed Google Scholar
- Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109: 3812–3819.
Article CAS PubMed Google Scholar
- Amedei A, Niccolai E, Benagiano M, Della Bella C, Cianchi F, Bechi P et al. Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 2013; 62: 1249–1260.
Article CAS PubMed Google Scholar
- Lunt SY, Vander Heiden MG . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441–464.
Article CAS PubMed Google Scholar
- Witkiewicz AK, Nguyen KH, Dasgupta A, Kennedy EP, Yeo CJ, Lisanti MP et al. Co-expression of fatty acid synthase and caveolin-1 in pancreatic ductal adenocarcinoma: implications for tumor progression and clinical outcome. Cell Cycle 2008; 7: 3021–3025.
Article CAS PubMed Google Scholar
- Yang Y, Liu H, Li Z, Zhao Z, Yip-Schneider M, Fan Q et al. Role of fatty acid synthase in gemcitabine and radiation resistance of pancreatic cancers. Int J Biochem Mol Biol 2011; 2: 89–98.
CAS PubMed PubMed Central Google Scholar
- Liu L, Gong L, Zhang Y, Li N . Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus. Exp Ther Med 2013; 5: 338–342.
Article CAS PubMed Google Scholar
- Seidler NW . Compartmentation of GAPDH. Adv Exp Med Biol 2013; 985: 61–101.
Article PubMed Google Scholar
- Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037–2042.
Article CAS PubMed PubMed Central Google Scholar
- Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y . Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 2005; 65: 999–1006.
CAS PubMed Google Scholar
- Blum R, Elkon R, Yaari S, Zundelevich A, Jacob-Hirsch J, Rechavi G et al. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). Cancer Res 2007; 67: 3320–3328.
Article CAS PubMed Google Scholar
- Blum R, Jacob-Hirsch J, Rechavi G, Kloog Y . Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis. Mol Cancer Ther 2006; 5: 2337–2347.
Article CAS PubMed Google Scholar
- Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D . The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radical Biol Med 2012; 53: 421–436.
Article CAS Google Scholar
- Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.
Article CAS PubMed Google Scholar
- Nagaoka Y, Iuchi Y, Ikeda Y, Fujii J . Glutathione reductase is expressed at high levels in pancreatic islet cells. Redox Rep 2004; 9: 321–324.
Article CAS PubMed Google Scholar
- Dashty M . A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 2013; 46: 1339–1352.
Article CAS PubMed Google Scholar
- Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656–670.
Article CAS PubMed PubMed Central Google Scholar
- Bar-Sagi DA . Ras by any other name. Mol Cell Biol 2001; 21: 1441–1443.
Article CAS PubMed PubMed Central Google Scholar
- Blum R, Kloog Y . Tailoring Ras-pathway—inhibitor combinations for cancer therapy. Drug Resistance Updates 2005; 8: 369–380.
Article CAS PubMed Google Scholar
- Blum R, Cox AD, Kloog Y . Inhibitors of chronically active ras: potential for treatment of human malignancies. Recent Patents Anti-Cancer Drug Discovery 2008; 3: 31–47.
Article CAS PubMed Google Scholar
- Tada M, Omata M, Kawai S, Saisho H, Ohto M, Saiki RK et al. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 1993; 53: 2472–2474.
CAS PubMed Google Scholar
- Yamada T, Nakamori S, Ohzato H, Oshima S, Aoki T, Higaki N et al. Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res 1998; 4: 1527–1532.
CAS PubMed Google Scholar
- Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.
Article CAS PubMed Google Scholar
- Qian J, Niu J, Li M, Chiao PJ, Tsao MS . In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res 2005; 65: 5045–5053.
Article CAS PubMed Google Scholar
- Mohamedali A, Lea NC, Feakins RM, Raj K, Mufti GJ, Kocher HM . AKT1 (E17K) mutation in pancreatic cancer. Tech Cancer Res Treatment 2008; 7: 407–408.
Article CAS Google Scholar
- Okami K, Wu L, Riggins G, Cairns P, Goggins M, Evron E et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res 1998; 58: 509–511.
CAS PubMed Google Scholar
- Sakurada A, Suzuki A, Sato M, Yamakawa H, Orikasa K, Uyeno S et al. Infrequent genetic alterations of the PTEN/MMAC1 gene in Japanese patients with primary cancers of the breast, lung, pancreas, kidney, and ovary. Jpn J Cancer Res 1997; 88: 1025–1028.
Article CAS PubMed PubMed Central Google Scholar
- Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE . Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002; 418: 934.
Article CAS PubMed Google Scholar
- Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.
Article CAS PubMed Google Scholar
- Berger DH, Jardines LA, Chang H, Ruggeri B . Activation of Raf-1 in human pancreatic adenocarcinoma. J Surg Res 1997; 69: 199–204.
Article CAS PubMed Google Scholar
- Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol 2003; 163: 1255–1260.
Article CAS PubMed PubMed Central Google Scholar
- Schonleben F, Qiu W, Ciau NT, Ho DJ, Li X, Allendorf JD et al. PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res 2006; 12: 3851–3855.
Article PubMed PubMed Central Google Scholar
- Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA . The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 2004; 23: 8571–8580.
Article CAS PubMed Google Scholar
- Altomare DA, Tanno S, De Rienzo A, Klein-Szanto AJ, Skele KL, Hoffman JP et al. Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 2002; 87: 470–476.
Article CAS PubMed Google Scholar
- Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.
Article CAS PubMed PubMed Central Google Scholar
- Ruggeri BA, Huang L, Wood M, Cheng JQ, Testa JR . Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog 1998; 21: 81–86.
Article CAS PubMed Google Scholar
- Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ . Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 2003; 89: 2110–2115.
Article CAS PubMed PubMed Central Google Scholar
- Yamamoto S, Tomita Y, Hoshida Y, Morooka T, Nagano H, Dono K et al. Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin Cancer Res 2004; 10: 2846–2850.
Article CAS PubMed Google Scholar
- Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP Jr et al. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem 1999; 274: 20281–20286.
Article CAS PubMed Google Scholar
- Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH . Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272: 17269–17275.
Article CAS PubMed Google Scholar
- Robey RB, Hay N . Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 2006; 25: 4683–4696.
Article CAS PubMed Google Scholar
- Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N . Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001; 15: 1406–1418.
Article CAS PubMed PubMed Central Google Scholar
- Sodhi A, Montaner S, Miyazaki H, Gutkind JS . MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 2001; 287: 292–300.
Article CAS PubMed Google Scholar
- Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012; 22: 399–412.
Article CAS PubMed Google Scholar
- Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90: 3322–3331.
CAS PubMed Google Scholar
- Gao N, Ding M, Zheng JZ, Zhang Z, Leonard SS, Liu KJ et al. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem 2002; 277: 31963–31971.
Article CAS PubMed Google Scholar
- Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL . Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277: 38205–38211.
Article CAS PubMed Google Scholar
- Mottet D, Michel G, Renard P, Ninane N, Raes M, Michiels C . Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol 2003; 194: 30–44.
Article CAS PubMed Google Scholar
- Jansen B, Schlagbauer-Wadl H, Kahr H, Heere-Ress E, Mayer BX, Eichler H et al. Novel Ras antagonist blocks human melanoma growth. Proc Natl Acad Sci USA 1999; 96: 14019–14024.
Article CAS PubMed PubMed Central Google Scholar
- Jansen B, Heere-Ress E, Schlagbauer-Wadl H, Halaschek-Wiener J, Waltering S, Moll I et al. Farnesylthiosalicylic acid inhibits the growth of human Merkel cell carcinoma in SCID mice. J Mol Med (Berl) 1999; 77: 792–797.
Article CAS Google Scholar
- Erlich S, Tal-Or P, Liebling R, Blum R, Karunagaran D, Kloog Y et al. Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochem Pharmacol 2006; 72: 427–436.
Article CAS PubMed Google Scholar
- Laheru D, Shah P, Rajeshkumar NV, McAllister F, Taylor G, Goldsweig H et al. Integrated preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic acid (FTS, Salirasib) in pancreatic cancer. Invest New Drugs 2012; 30: 2391–2399.
Article CAS PubMed PubMed Central Google Scholar
- Haklai R, Elad-Sfadia G, Egozi Y, Kloog Y . Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. Cancer Chemother Pharmacol 2008; 61: 89–96.
Article CAS PubMed Google Scholar
- Weisz B, Giehl K, Gana-Weisz M, Egozi Y, Ben-Baruch G, Marciano D et al. A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 1999; 18: 2579–2588.
Article CAS PubMed Google Scholar
- Maher JC, Krishan A, Lampidis TJ . Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic versus aerobic conditions. Cancer Chemother Pharmacol 2004; 53: 116–122.
Article CAS PubMed Google Scholar
- Xiao H, Li S, Zhang D, Liu T, Yu M, Wang F . Separate and concurrent use of 2-deoxy-D-glucose and 3-bromopyruvate in pancreatic cancer cells. Oncol Rep 2013; 29: 329–334.
Article CAS PubMed Google Scholar
- Goldberg L, Ocherashvilli A, Daniels D, Last D, Cohen ZR, Tamar G et al. Salirasib (farnesyl thiosalicylic acid) for brain tumor treatment: a convection-enhanced drug delivery study in rats. Mol Cancer Ther 2008; 7: 3609–3616.
Article CAS PubMed Google Scholar
- Dearling JL, Flynn AA, Sutcliffe-Goulden J, Petrie IA, Boden R, Green AJ et al. Analysis of the regional uptake of radiolabeled deoxyglucose analogs in human tumor xenografts. J Nucl Med 2004; 45: 101–107.
CAS PubMed Google Scholar
- Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 2010; 70: 2465–2475.
Article CAS PubMed Google Scholar
- Goldberg L, Israeli R, Kloog Y . FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. Cell Death Dis 2012; 3: e284.
Article CAS PubMed PubMed Central Google Scholar
- DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.
Article CAS PubMed Google Scholar
- Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.
Article CAS PubMed PubMed Central Google Scholar
- Wise DR, Thompson CB . Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35: 427–433.
Article CAS PubMed PubMed Central Google Scholar
- Owen OE, Kalhan SC, Hanson RW . The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002; 277: 30409–30412.
Article CAS PubMed Google Scholar
- Young VR, Ajami AM . Glutamine: the emperor or his clothes? J Nutr 2001; 131 (9 Suppl): 2449S–2459S discussion 2486S-2447S.
Article CAS PubMed Google Scholar
- Erickson JW, Cerione RA . Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 2010; 1: 734–740.
PubMed PubMed Central Google Scholar
- Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT . Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl) 2011; 89: 229–236.
Article CAS Google Scholar
- Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101–105.
Article CAS PubMed PubMed Central Google Scholar
- Greenhill C . Novel pathway identified for glutamine metabolism in PDAC. Nat Rev Gastroenterol Hepatol 2013; 10: 260.
Article PubMed Google Scholar
- Clerc P, Bensaadi N, Pradel P, Estival A, Clemente F, Vaysse N . Lipid-dependent proliferation of pancreatic cancer cell lines. Cancer Res 1991; 51: 3633–3638.
CAS PubMed Google Scholar
- Calderon P, Furnelle J, Christophe J . In vitro lipid metabolism in the rat pancreas. I. Basal lipid metabolism. Biochim Biophys Acta 1979; 574: 379–390.
Article CAS PubMed Google Scholar
- Berridge MJ . Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 1987; 56: 159–193.
Article CAS PubMed Google Scholar
- Ohmura E, Okada M, Onoda N, Kamiya Y, Murakami H, Tsushima T et al. Insulin-like growth factor I and transforming growth factor alpha as autocrine growth factors in human pancreatic cancer cell growth. Cancer Res 1990; 50: 103–107.
CAS PubMed Google Scholar
- Liehr RM, Melnykovych G, Solomon TE . Growth effects of regulatory peptides on human pancreatic cancer lines PANC-1 and MIA PaCa-2. Gastroenterology 1990; 98: 1666–1674.
Article CAS PubMed Google Scholar
- Smith JJ, Derynck R, Korc M . Production of transforming growth factor alpha in human pancreatic cancer cells: evidence for a superagonist autocrine cycle. Proc Natl Acad Sci USA 1987; 84: 7567–7570.
Article CAS PubMed PubMed Central Google Scholar
- Imagawa W, Bandyopadhyay GK, Wallace D, Nandi S . Phospholipids containing polyunsaturated fatty acyl groups are mitogenic for normal mouse mammary epithelial cells in serum-free primary cell culture. Proc Natl Acad Sci USA 1989; 86: 4122–4126.
Article CAS PubMed PubMed Central Google Scholar
- Cheon EC, Strouch MJ, Barron MR, Ding Y, Melstrom LG, Krantz SB et al. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice. Int J Cancer 2011; 128: 2783–2792.
Article CAS PubMed Google Scholar
- Boudreau MD, Sohn KH, Rhee SH, Lee SW, Hunt JD, Hwang DH . Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res 2001; 61: 1386–1391.
CAS PubMed Google Scholar
- Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 2009; 106: 3354–3359.
Article CAS PubMed PubMed Central Google Scholar
- Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625–1638.
Article PubMed Google Scholar
- Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS . Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 2001; 286: 921–929.
Article CAS PubMed Google Scholar
- Rose DP . Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. Am J Clin Nutr 1997; 66 (6 Suppl): 1513S–1522S.
Article CAS PubMed Google Scholar
- Rose DP, Connolly JM . Dietary fat and breast cancer metastasis by human tumor xenografts. Breast Cancer Res Treat 1997; 46: 225–237.
Article CAS PubMed Google Scholar
- Rose DP, Connolly JM . Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999; 83: 217–244.
Article CAS PubMed Google Scholar
- Strouch MJ, Ding Y, Salabat MR, Melstrom LG, Adrian K, Quinn C et al. A high omega-3 fatty acid diet mitigates murine pancreatic precancer development. J Surg Res 2011; 165: 75–81.
Article CAS PubMed Google Scholar
- Farre JC, Krick R, Subramani S, Thumm M . Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 2009; 21: 522–530.
Article CAS PubMed PubMed Central Google Scholar
- Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22: 124–131.
Article CAS PubMed Google Scholar
- Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X . ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284: 12297–12305.
Article CAS PubMed PubMed Central Google Scholar
- Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992–2003.
Article CAS PubMed PubMed Central Google Scholar
- Mercer CA, Kaliappan A, Dennis PB . A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009; 5: 649–662.
Article CAS PubMed Google Scholar
- Reggiori F, Klionsky DJ . Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 2005; 17: 415–422.
Article CAS PubMed Google Scholar
- Suzuki K, Ohsumi Y . Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007; 581: 2156–2161.
Article CAS PubMed Google Scholar
- Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20: 1981–1991.
Article CAS PubMed PubMed Central Google Scholar
- Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P . Autophagy: for better or for worse. Cell Res 2012; 22: 43–61.
Article CAS PubMed Google Scholar
- Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116 (Pt 9): 1679–1688.
Article CAS PubMed Google Scholar
- Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T . LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117 (Pt 13): 2805–2812.
Article CAS PubMed Google Scholar
- Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.
Article CAS PubMed Google Scholar
- Yazbeck VY, Buglio D, Georgakis GV, Li Y, Iwado E, Romaguera JE et al. Temsirolimus downregulates p21 without altering cyclin D1 expression and induces autophagy and synergizes with vorinostat in mantle cell lymphoma. Exp Hematol 2008; 36: 443–450.
Article CAS PubMed Google Scholar
- Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J et al. The anticancer drug imatinib induces cellular autophagy. Leukemia 2007; 21: 936–942.
Article CAS PubMed Google Scholar
- Gorzalczany Y, Gilad Y, Amihai D, Hammel I, Sagi-Eisenberg R, Merimsky O . Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer. Cancer Lett 2011; 310: 207–215.
Article CAS PubMed Google Scholar
- Hsu KF, Wu CL, Huang SC, Wu CM, Hsiao JR, Yo YT et al. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy 2009; 5: 451–460.
Article CAS PubMed Google Scholar
- Rez G, Toth S, Palfia Z . Cellular autophagic capacity is highly increased in azaserine-induced premalignant atypical acinar nodule cells. Carcinogenesis 1999; 20: 1893–1898.
Article CAS PubMed Google Scholar
- Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25: 717–729.
Article CAS PubMed PubMed Central Google Scholar
- Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 2008; 99: 1813–1819.
Article CAS PubMed Google Scholar
- Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25: 460–470.
Article CAS PubMed PubMed Central Google Scholar
- Mazure NM, Pouyssegur J . Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 2010; 22: 177–180.
Article CAS PubMed Google Scholar
- Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27: 6229–6242.
Article CAS PubMed PubMed Central Google Scholar
- Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.
Article CAS PubMed Google Scholar
- Okami J, Simeone DM, Logsdon CD . Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 2004; 64: 5338–5346.
Article CAS PubMed Google Scholar
- Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267: 14998–15004.
CAS PubMed Google Scholar
- Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT et al. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 2002; 59: 1117–1128.
Article CAS PubMed Google Scholar
- Basta G, Lazzerini G, Del Turco S, Ratto GM, Schmidt AM, De Caterina R . At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol 2005; 25: 1401–1407.
Article CAS PubMed Google Scholar
- Cai W, He JC, Zhu L, Lu C, Vlassara H . Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci USA 2006; 103: 13801–13806.
Article CAS PubMed PubMed Central Google Scholar
- Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ . RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem 2010; 17: 2232–2252.
Article CAS PubMed Google Scholar
- Rojas A, Figueroa H, Morales E . Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis 2010; 31: 334–341.
Article CAS PubMed Google Scholar
- Logsdon CD, Fuentes MK, Huang EH, Arumugam T . RAGE and RAGE ligands in cancer. Curr Mol Med 2007; 7: 777–789.
Article CAS PubMed Google Scholar
- Abe R, Yamagishi S . AGE-RAGE system and carcinogenesis. Curr Pharm Des 2008; 14: 940–945.
Article CAS PubMed Google Scholar
- Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 2010; 17: 666–676.
Article CAS PubMed Google Scholar
- Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995; 270: 25752–25761.
Article CAS PubMed Google Scholar
- Tang D, Kang R, Zeh HJ 3rd, Lotze MT . High-mobility group box 1 and cancer. Biochim Biophys Acta 2010; 1799: 131–140.
Article CAS PubMed PubMed Central Google Scholar
- Liu Y, Prasad R, Wilson SH . HMGB1: roles in base excision repair and related function. Biochim Biophys Acta 2010; 1799: 119–130.
Article CAS PubMed PubMed Central Google Scholar
- Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ 3rd . The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Signal 2011; 15: 2175–2184.
Article CAS PubMed PubMed Central Google Scholar
- Kang R, Tang D, Schapiro NE, Loux T, Livesey KM, Billiar TR et al. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2013; 33: 567–577.
Article CAS PubMed PubMed Central Google Scholar
- Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P et al. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190: 881–892.
Article CAS PubMed PubMed Central Google Scholar
- Kim MJ, Woo SJ, Yoon CH, Lee JS, An S, Choi YH et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 2011; 286: 12924–12932.
Article CAS PubMed PubMed Central Google Scholar
- Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 2011; 22: 165–178.
Article CAS PubMed PubMed Central Google Scholar
- Mancias JD, Kimmelman AC . Targeting autophagy addiction in cancer. Oncotarget 2011; 2: 1302–1306.
Article PubMed PubMed Central Google Scholar