Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond (original) (raw)
References
Maron, B. J., Towbin, J. A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation113, 1807–1816 (2006). ArticlePubMed Google Scholar
Ahmad, F., Seidman, J. G. & Seidman, C. E. The genetic basis for cardiac remodeling. Annu. Rev. Genomics Hum. Genet.6, 185–216 (2006). ArticleCAS Google Scholar
Kushwaha, S. S., Fallon, J. & Fuster, V. Restrictive cardiomyopathy. N. Engl. J. Med.336, 267–276 (1997). ArticleCASPubMed Google Scholar
Seidman, J. G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell104, 557–567 (2001). ArticleCASPubMed Google Scholar
Goerss, J. B., Michels, V. V., Burnett, J., Driscoll, D. J., Miller, F., Rodeheffer, R. et al. Frequency of familial dilated cardiomyopathy. Eur. Heart J.16, O2–O4 1995)). Article Google Scholar
Mestroni, L., Rocco, C., Gregori, D., Sinagra, G., Di Lenarda, A., Miocic, S. et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J. Am. Coll. Cardiol.34, 181–190 (1999). ArticleCASPubMed Google Scholar
Geisterfer-Lowrance, A. A. T., Kass, S., Tanigawa, G., Vosberg, H. P., McKenna, W., Seidman, C. E. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell62, 999–1006 (1990). ArticleCASPubMed Google Scholar
Nishi, H., Kimura, A., Harada, H., Adachi, K., Koga, Y., Sasazuki, T. et al. Possible gene dose effect of a mutant cardiac beta-myosin heavy chain gene on the clinical expression of familial hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.200, 549–556 (1994). ArticleCASPubMed Google Scholar
Kimura, A., Harada, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M. et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet.16, 379–382 (1997). ArticleCASPubMed Google Scholar
Arad, M., Seidman, J. G. & Seidman, C. E. Phenotypic diversity in hypertrophic cardiomyopathy. Hum. Mol. Genet.11, 2499–2506 (2002). ArticleCASPubMed Google Scholar
Kimura, A. Molecular etiology and pathogenesis of hereditary cardiomyopathy. Circ. J.72, A38–A48 (2008). ArticlePubMed Google Scholar
Watkins, H., Rosenzweig, A., Hwang, D. S., Levi, T., McKenna, W. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med.326, 1108–1114 (1992). ArticleCASPubMed Google Scholar
Harada, H., Kimura, A., Nishi, H., Sasazuki, T. & Toshima, H. A missense mutation of cardiac beta-myosin heavy chain gene linked to familial hypertrophic cardiomyopathy in affected Japanese families. Biochem. Biophys. Res. Commun.194, 791–798 (1993). ArticleCASPubMed Google Scholar
Hwang, T. H., Lee, W. H., Kimura, A., Satoh, M., Nakamura, T., Kim, M. K. et al. Early expression of a malignant phenotype of familial hypertrophic cardiomyopathy associated with a Gly716Arg myosin heavy chain mutation in a Korean family. Am. J. Cardiol.82, 1509–1513 (1998). ArticleCASPubMed Google Scholar
Nishi, H., Kimura, A., Harada, H., Koga, Y., Adachi, K., Matsuyama, K., Koyanagi, T. et al. A myosin missense mutation, not a null allele, causes familial hypertrophic cardiomyopathy. Circulation91, 2911–2915 (1995). ArticleCASPubMed Google Scholar
Koga, Y., Toshima, H., Kimura, A., Harada, H., Koyanagi, T., Nishi, H. et al. Clinical manifestations of hypertrophic cardiomyopathy with mutations in the cardiac beta-myosin heavy chain gene or cardiac troponin T gene. J. Card. Fail.2, S97–S103 (1996). ArticleCASPubMed Google Scholar
Rayment, I., Holden, H. M., Sellers, J. R., Fananapazir, L. & Epstein, N. D. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA92, 3864–3868 (1995). ArticleCASPubMedPubMed Central Google Scholar
Watkins, H., McKenna, W. J., Thierfelder, L., Suk, H. J., Anan, R. et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med.332, 1058–1064 (1995). ArticleCASPubMed Google Scholar
Varnava, A. M., Elliott, P. M., Baboonian, C., Davison, F., Davies, M. J. & McKenna, W. J. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation104, 1380–1384 (2001). ArticleCASPubMed Google Scholar
Niimura, H., Patton, K. K., McKenna, W. J., Soults, J., Maron, B. J., Seidman, J. G. et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation105, 446–451 (2002). ArticleCASPubMed Google Scholar
Kubo, T., Kitaoka, H., Okawa, M., Matsumura, Y., Hitomi, N., Yamasaki, N. et al. Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac myosin-binding protein C gene among Japanese. J. Am. Coll. Cardiol.46, 1737–1743 (2005). ArticleCASPubMed Google Scholar
Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A. & Faust, L. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J. Biol. Chem.269, 1603–1605 (1994). ArticleCASPubMed Google Scholar
Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H. P. et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell77, 701–712 (1994). ArticlePubMed Google Scholar
Yanaga, F., Morimoto, S. & Ohtsuki, I. Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. J. Biol. Chem.274, 8806–8812 (1999). ArticleCASPubMed Google Scholar
Bottinelli, R., Coviello, D. A., Redwood, C. S., Pellegrino, M. A., Maron, B. J., Spirito, P. et al. A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ. Res.82, 106–115 (1998). ArticleCASPubMed Google Scholar
Elliott, K., Watkins, H. & Redwood, C. S. Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J. Biol. Chem.275, 22069–22074 (2000). ArticleCASPubMed Google Scholar
Witt, C. C., Gerull, B., Davies, M. J., Centner, T., Linke, W. A. & Thierfelder, L. Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C. J. Biol. Chem.276, 5353–5359 (2001). ArticleCASPubMed Google Scholar
Roopnarine, O. Mechanical defects of muscle fibers with myosin light chain mutants that cause cardiomyopathy. Biophys. J.84, 2440–2449 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pinto, J. R., Parvatiyar, M. S., Jones, M. A., Liang, J., Ackerman, M. J. & Potter, J. D. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J. Biol. Chem.284, 19090–19100 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G. & Warshaw, D. M. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ. Res.86, 737–744 (2000). ArticleCASPubMed Google Scholar
Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, F. & Kimura, A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem. Biophys. Res. Commun.262, 411–417 (1999). ArticleCASPubMed Google Scholar
Hayashi, T., Arimura, T., Itoh-Satoh, M., Ueda, K., Hohda, S., Inagaki, N. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol.44, 2192–2201 (2004). ArticleCASPubMed Google Scholar
Cazorla, O., Wu, Y., Irving, T. C. & Granzier, H. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ. Res.88, 1028–1035 (2001). ArticleCASPubMed Google Scholar
Fujita, H., Labeit, D., Gerull, B., Labeit, S. & Granzier, H. L. Titin isoform-dependent effect of calcium on passive myocardial tension. Am. J. Physiol. Heart Circ. Physiol.287, H2528–H2534 (2004). ArticleCASPubMed Google Scholar
Fuchs, F. & Martyn, D. A. Length-dependent Ca(2+) activation in cardiac muscle: some remaining questions. J. Muscle Res. Cell Motil.26, 199–212 (2005). ArticleCASPubMed Google Scholar
Geier, C., Perrot, A., Ozcelik, C., Binner, P., Counsell, D., Hoffmann, K. et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation107, 1390–1395 (2003). ArticleCASPubMed Google Scholar
Gehmlich, K., Geier, C., Osterziel, K. J., Van der Ven, P. F. & Fürst, D. O. Decreased interactions of mutant muscle LIM protein (MLP) with N-RAP and alpha-actinin and their implication for hypertrophic cardiomyopathy. Cell Tissue Res.317, 129–136 (2004). ArticleCASPubMed Google Scholar
Mohapatra, B., Jimenez, S., Lin, J. H., Bowles, K. R., Coveler, K. J., Marx, J. G. et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab.80, 207–215 (2003). ArticleCASPubMed Google Scholar
Hayashi, T., Arimura, T., Ueda, K., Shibata, H., Hohda, S., Takahashi, M. et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.313, 178–184 (2004). ArticleCASPubMed Google Scholar
Vasile, V. C., Ommen, S. R., Edwards, W. D. & Ackerman, M. J. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.345, 998–1003 (2006). ArticleCASPubMed Google Scholar
Wang, X., Osinska, H., Klevitsky, R., Gerdes, A. M., Nieman, M., Lorenz, J. et al. Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ. Res.89, 84–91 (2001). ArticleCASPubMed Google Scholar
Landstrom, A. P., Weisleder, N., Batalden, K. B., Bos, J. M., Tester, D. J., Ommen, S. R. et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell Cardiol.42, 1026–1035 (2007). ArticleCASPubMedPubMed Central Google Scholar
Arimura, T., Matsumoto, Y., Okazaki, O., Hayashi, T., Takahashi, M., Inagaki, N. et al. Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.362, 281–287 (2007). ArticleCASPubMed Google Scholar
Arimura, T., Bos, M. J., Sato, A., Kubo, T., Okamoto, H., Nishi, H. et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.54, 334–342 (2009). ArticleCASPubMed Google Scholar
Rajasekaran, N. S., Connell, P., Christians, E. S., Yan, L. J., Taylor, R. P., Orosz, A. et al. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell130, 427–439 (2007). ArticleCASPubMedPubMed Central Google Scholar
Matsumoto, Y., Hayashi, T., Inagaki, N., Takahashi, M., Hiroi, S., Nakamura, T. et al. Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J. Muscle Res. Cell Motil.26, 367–374 (2005). ArticleCASPubMed Google Scholar
Inagaki, N., Hayashi, T., Arimura, T., Koga, Y., Takahashi, M., Shibata, H. et al. Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem. Biophys. Res. Commun.342, 379–386 (2006). ArticleCASPubMed Google Scholar
Kikuchi, T., Oka, N., Koga, A., Miyazaki, H., Ohmura, H. & Imaizumi, T. Behavior of caveolae and caveolin-3 during the development of myocyte hypertrophy. J. Cardiovasc. Pharmacol.45, 204–210 (2005). ArticleCASPubMed Google Scholar
Koga, A., Oka, N., Kikuchi, T., Miyazaki, H., Kato, S. & Imaizumi, T. Adenovirus-mediated overexpression of caveolin-3 inhibits rat cardiomyocyte hypertrophy. Hypertension42, 213–219 (2003). ArticleCASPubMed Google Scholar
Young, P., Ehler, E. & Gautel, M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J. Cell Biol.154, 123–136 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aihara, Y., Kurabayashi, M., Saito, Y., Ohyama, Y., Tanaka, T., Takeda, S. et al. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension36, 48–53 (2000). ArticleCASPubMed Google Scholar
Witt, S. H., Labeit, D., Granzier, H., Labeit, S. & Witt, C. C. Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling. J. Muscle Res. Cell Motil.262, 1–8 (2006). Google Scholar
Towbin, J. A., Hejtmancik, J. F., Brink, P., Gelb, B., Zhu, X. M., Chamberlain, J. S. et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation87, 1854–1865 (1993). ArticleCASPubMed Google Scholar
Muntoni, F., Torelli, S. & Ferlini, A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol.2, 731–740 (2003). ArticleCASPubMed Google Scholar
Finsterer, J. & Stöllberger, C. The heart in human dystrophinopathies. Cardiology99, 1–19 (2003). ArticlePubMed Google Scholar
Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res.94, 1023–1031 (2004). ArticleCASPubMed Google Scholar
Tsubata, S., Bowles, K. R., Vatta, M., Zintz, C., Titus, J., Muhonen, L. et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest.106, 655–662 (2000). ArticleCASPubMedPubMed Central Google Scholar
Knöll, R., Postel, R., Wang, J., Krätzner, R., Hennecke, G., Vacaru, A. M. et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation116, 515–525 (2007). ArticlePubMedCAS Google Scholar
Towbin, J. A. & Bowles, N. E. Genetic abnormalities responsible for dilated cardiomyopathy. Curr. Cardiol. Rep.2, 475–480 (2000). ArticleCASPubMed Google Scholar
Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y. S. & Keating, M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science280, 750–752 (1998). ArticleCASPubMed Google Scholar
Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A. et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest.103, R39–R43 (1999). ArticleCASPubMedPubMed Central Google Scholar
Vang, S., Corydon, T. J., Børglum, A. D., Scott, M. D., Frydman, J., Mogensen, J. et al. Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J.272, 2037–2049 (2005). ArticleCASPubMed Google Scholar
Kamisago, M., Sharma, S. D., DePalma, S. R., Solomon, S., Sharma, P., McDonough, B. et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med.343, 1688–1696 (2000). ArticleCASPubMed Google Scholar
Morimoto, S., Lu, Q. W., Harada, K., Takahashi-Yanaga, F., Minakami, R., Ohta, M. et al. Ca(2+)-desensitizing effect of a deletion mutation Delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc. Natl. Acad. Sci. USA99, 913–918 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chang, A. N. & Potter, J. D. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail. Rev.10, 225–235 (2005). ArticleCASPubMed Google Scholar
Itoh-Satoh, M., Hayashi, T., Nishi, H., Koga, Y., Arimura, T., Koyanagi, T. et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun.291, 385–393 (2002). ArticleCASPubMed Google Scholar
Knöll, R., Hoshijima, M., Hoffman, H. M., Person, V., Lorenzen-Schmidt, I., Bang, M. L. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell111, 943–955 (2002). ArticlePubMed Google Scholar
Zhou, Q., Ruiz-Lozano, P., Martone, M. E. & Chen, J. Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J. Biol. Chem.274, 19807–19813 (1999). ArticleCASPubMed Google Scholar
Frey, N., Richardson, J. A. & Olson, E. N. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl. Acad. Sci. USA97, 14632–14637 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wilkins, B. J. & Molkentin, J. D. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun.322, 1178–1191 (2004). ArticleCASPubMed Google Scholar
Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Rev. Mol. Cell Biol.7, 589–600 (2006). ArticleCAS Google Scholar
Heineke, J., Ruetten, H., Willenbockel, C., Gross, S. C., Naguib, M., Schaefer, A. et al. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc. Natl. Acad. Sci. USA102, 1655–1660 (2005). ArticleCASPubMedPubMed Central Google Scholar
Arimura, T., Hayashi, T., Terada, H., Lee, S. Y., Zhou, Q., Takahashi, M. et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J. Biol. Chem.279, 6746–6752 (2004). ArticleCASPubMed Google Scholar
Vatta, M., Mohapatra, B., Jimenez, S., Sanchez, X., Faulkner, G., Perles, Z. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol.42, 2014–2027 (2003). ArticleCASPubMed Google Scholar
Arimura, T., Inagaki, N., Hayashi, T., Shichi, D., Sato, A., Hinohara, K. et al. Impaired binding of ZASP/Cypher with phosphoglucomutase 1 is associated with dilated cardiomyopathy. Cardiovasc. Res.83, 80–88 (2009). ArticleCASPubMed Google Scholar
Li, D., Tapscoft, T., Gonzalez, O., Burch, P. E., Quiñones, M. A., Zoghbi, W. A. et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation100, 461–464 (1999). ArticleCASPubMed Google Scholar
Olson, T. M., Illenberger, S., Kishimoto, N. Y., Huttelmaier, S., Keating, M. T. & Jockusch, B. M. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation105, 431–437 (2002). ArticleCASPubMed Google Scholar
Taylor, M. R., Slavov, D., Ku, L., Di Lenarda, A., Sinagra, G., Carniel, E. et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation115, 1244–1251 (2007). ArticleCASPubMed Google Scholar
Duboscq-Bidot, L., Xu, P., Charron, P., Neyroud, N., Dilanian, G., Millaire, A. et al. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res.77, 118–125 (2008). ArticleCASPubMed Google Scholar
Fatkin, D., MacRae, C., Sasaki, T., Wolff, M. R., Porcu, M., Frenneaux, M. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med.341, 1715–1724 (1999). ArticleCASPubMed Google Scholar
Bonne, G., Di Barletta, M. R., Varnous, S., Bécane, H. M., Hammouda, E. H., Merlini, L. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genet.21, 285–288 (1999). ArticleCASPubMed Google Scholar
Bione, S., Small, K., Aksmanovic, V. M., D’Urso, M., Ciccodicola, A., Merlini, L. et al. Identification of new mutations in the Emery-Dreifuss muscular dystrophy gene and evidence for genetic heterogeneity of the disease. Hum. Mol. Genet.4, 1859–1863 (1995). ArticleCASPubMed Google Scholar
Morris, G. E. & Manilal, S. Heart to heart: from nuclear proteins to Emery-Dreifuss muscular dystrophy. Hum. Mol. Genet.8, 1847–1851 (1999). ArticleCASPubMed Google Scholar
Sylvius, N. & Tesson, F. Lamin A/C and cardiac diseases. Curr. Opin. Cardiol.21, 159–165 (2006). ArticlePubMed Google Scholar
Arimura, T., Helbling-Leclerc, A., Massart, C., Varnous, S., Niel, F., Lacène, E. et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum. Mol. Genet.14, 155–169 (2005). ArticleCASPubMed Google Scholar
Muchir, A., Pavlidis, P., Decostre, V., Herron, A. J., Arimura, T., Bonne, G. et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J. Clin. Invest.117, 1282–1293 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bienengraeber, M., Olson, T. M., Selivanov, V. A., Kathmann, E. C., O’Cochlain, F., Gao, F. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nature Genet.36, 382–387 (2004). ArticleCASPubMed Google Scholar
McNair, W. P., Ku, L., Taylor, M. R., Fain, P. R., Dao, D., Wolfel, E. et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation110, 2163–2167 (2004). ArticleCASPubMed Google Scholar
Lehnart, S. E., Ackerman, M. J., Benson, D. W. Jr., Brugada, R., Clancy, C. E., Donahue, J. K. et al. Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation116, 2325–2345 (2007). ArticleCASPubMed Google Scholar
Arimura, T., Hayashi, T., Matsumoto, Y., Shibata, H., Hiroi, S., Nakamura, T. et al. Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy. Biochem. Biophys. Res. Commun.357, 162–167 (2007). ArticleCASPubMed Google Scholar
Johannessen, M., Møller, S., Hansen, T., Moens, U. & Van Ghelue, M. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol. Life Sci.63, 268–284 (2006). ArticleCASPubMed Google Scholar
Moulik, M., Vatta, M., Witt, S. H., Alora, A. M., Murphy, R. T., McKenna, W. J. et al. ANKRD -the gene encoding cardiac ankyrin repeat protein- is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol.54, 325–333 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hoshijima, M., Knöll, R., Pashmforoush, M. & Chien, K. R. Reversal of calcium cycling defects in advanced heart failure toward molecular therapy. J. Am. Coll. Cardiol.48, A15–A23 (2006). ArticleCASPubMed Google Scholar
Schmitt, J. P., Kamisago, M., Asahi, M., Li, G. H., Ahmad, F., Mende, U. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science299, 1410–1413 (2003). ArticleCASPubMed Google Scholar
Haghighi, K., Kolokathis, F., Gramolini, A. O., Waggoner, J. R., Pater, L., Lynch, R. A. et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl. Acad. Sci. USA103, 1388–1393 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chiu, C., Tebo, M., Ingles, J., Yeates, L., Arthur, J. W., Lind, J. M. et al. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell Cardiol.43, 337–343 (2007). ArticleCASPubMed Google Scholar
Koss, K. L., Grupp, I. L. & Kranias, E. G. The relative phospholamban and SERCA2 ratio: a critical determinant of myocardial contractility. Basic Res. Cardiol.92, S17–S24 (1997). Article Google Scholar
Minamisawa, S., Hoshijima, M., Chu, G., Ward, C. A., Frank, K., Gu, Y. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell99, 313–322 (1999). ArticleCASPubMed Google Scholar
Hoshijima, M., Ikeda, Y., Iwanaga, Y., Minamisawa, S., Date, M. O., Gu, Y. et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nature Med.8, 864–871 (2002). ArticleCASPubMed Google Scholar
Nigro, V., Okazaki, Y., Belsito, A., Piluso, G., Matsuda, Y., Politano, L. et al. Identification of the Syrian hamster cardiomyopathy gene. Hum. Mol. Genet.6, 601–607 (1997). ArticleCASPubMed Google Scholar
Minamisawa, S., Sato, Y., Tatsuguchi, Y., Fujino, T., Imamura, S., Uetsuka, Y. et al. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.304, 1–4 (2003). ArticleCASPubMed Google Scholar
Medin, M., Hermida-Prieto, M., Monserrat, L., Laredo, R., Rodriguez-Rey, J. C., Fernandez, X. et al. Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN-42 C>G mutation. Eur. J. Heart Fail.9, 37–43 (2007). ArticleCASPubMed Google Scholar
Kadambi, V. J., Ponniah, S., Harrer, J. M., Hoit, B. D., Dorn, G. W. II, Walsh, R. A. et al. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J. Clin. Invest.97, 533–539 (1996). ArticleCASPubMedPubMed Central Google Scholar
Barth, P. G., Valianpour, F., Bowen, V. M., Lam, J., Duran, M., Vaz, F. M. et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am. J. Med. Genet. A126, 349–354 (2004). Article Google Scholar
Murakami, T., Hayashi, Y. K., Noguchi, S., Ogawa, M., Nonaka, I., Tanabe, Y. et al. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann. Neurol.60, 597–602 (2006). ArticleCASPubMed Google Scholar
Norgett, E. E., Hatsell, S. J., Carvajal-Huerta, L., Cabezas, J. C., Common, J., Purkis, P. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet.9, 2761–2766 (2000). ArticleCASPubMed Google Scholar
Uzumcu, A., Norgett, E. E., Dindar, A., Uyguner, O., Nisli, K., Kayserili, H. et al. Loss of desmoplakin isoform I causes early onset cardiomyopathy and heart failure in a Naxos-like syndrome. J. Med. Genet.43, e5 (2006). ArticleCASPubMedPubMed Central Google Scholar
Arimura, T., Hayashi, Y. K., Murakami, T., Oya, Y., Funabe, S., Hirasawa, E. A. et al. Mutational analysis of fukutin gene in dilated cardiomyopathy and hypertrophic cardiomyopathy. Circ. J.73, 158–161 (2009). ArticleCASPubMed Google Scholar
Pinto, J. R., Parvatiyar, M. S., Jones, M. A., Liang, J. & Potter, J. D. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J. Biol. Chem.283, 2156–2166 (2008). ArticleCASPubMed Google Scholar
Yumoto, F., Lu, Q. W., Morimoto, S., Tanaka, H., Kono, N., Nagata, K. et al. Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochem. Biophys. Res. Commun.338, 1519–1526 (2005). ArticleCASPubMed Google Scholar
Kubo, T., Gimeno, J. R., Bahl, A., Steffensen, U., Steffensen, M., Osman, E. et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J. Am. Coll. Cardiol.49, 2419–2426 (2007). ArticleCASPubMed Google Scholar
Mogensen, J., Kubo, T., Duque, M., Uribe, W., Shaw, A., Murphy, R. et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest.111, 209–216 (2003). ArticleCASPubMedPubMed Central Google Scholar
Murphy, R. T., Mogensen, J., Shaw, A., Kubo, T., Hughes, S. & McKenna, W. J. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet363, 371–372 (2004). ArticleCASPubMed Google Scholar
Budde, B. S., Binner, P., Waldmüller, S., Höhne, W., Blankenfeldt, W., Hassfeld, S. et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS ONE2, e1362 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Monserrat, L., Hermida-Prieto, M., Fernandez, X., Rodríguez, I., Dumont, C., Cazón, L. et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur. Heart J.28, 1953–1961 (2007). ArticleCASPubMed Google Scholar
Hermida-Prieto, M., Monserrat, L., Castro-Beiras, A., Laredo, R., Soler, R., Peteiro, J. et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am. J. Cardiol.94, 50–54 (2004). ArticlePubMed Google Scholar
Bleyl, S. B., Mumford, B. R., Thompson, V., Carey, J. C., Pysher, T. J., Chin, T. K. et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genet.61, 868–872 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ichida, F., Tsubata, S., Bowles, K. R., Haneda, N., Uese, K., Miyawaki, T. et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation103, 1256–1263 (2001). ArticleCASPubMed Google Scholar
Chen, H., Shi, S., Acosta, L., Li, W., Lu, J., Bao, S. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development131, 2219–2231 (2004). ArticleCASPubMed Google Scholar
Neuhaus, H., Rosen, V. & Thies, R. S. Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech. Dev.80, 181–184 (1999). ArticleCASPubMed Google Scholar
Nakano, N., Hori, H., Abe, M., Shibata, H., Arimura, T., Sasaoka, T. et al. Interaction of BMP10 with Tcap may modulate the course of hypertensive cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol.293, H3396–H3403 (2007). ArticleCASPubMed Google Scholar
van Tintelen, J. P., Hofstra, R. M., Wiesfeld, A. C., van den Berg, M. P., Hauer, R. N. & Jongbloed, J. D. Molecular genetics of arrhythmogenic right ventricular cardiomyopathy: emerging horizon? Curr. Opin. Cardiol.22, 185–192 (2007). ArticlePubMed Google Scholar
McKoy, G., Protonotarios, N., Crosby, A., Tsatsopoulou, A., Anastasakis, A., Coonar, A. et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet355, 2119–2124 (2000). ArticleCASPubMed Google Scholar
Alcalai, R., Metzger, S., Rosenheck, S., Meiner, V. & Chajek-Shaul, T. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J. Am. Coll. Cardiol.42, 319–327 (2003). ArticleCASPubMed Google Scholar
Gerull, B., Heuser, A., Wichter, T., Paul, M., Basson, C. T., McDermott, D. A. et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nature Genet.36, 1162–1164 (2004). ArticleCASPubMed Google Scholar
Pilichou, K., Nava, A., Basso, C., Beffagna, G., Bauce, B., Lorenzon, A. et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation113, 1171–1179 (2006). ArticleCASPubMed Google Scholar
Tiso, N., Stephan, D. A., Nava, A., Bagattin, A., Devaney, J. M., Stanchi, F. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet.10, 189–194 (2001). ArticleCASPubMed Google Scholar
Beffagna, G., Occhi, G., Nava, A., Vitiello, L., Ditadi, A., Basso, C. et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res.65, 366–373 (2005). ArticleCASPubMed Google Scholar
Tadano, N., Morimoto, S., Yoshimura, A., Miura, M., Yoshioka, K., Sakato, M. et al. SCH00013, a novel Ca(2+) sensitizer with positive inotropic and no chronotropic action in heart failure. J. Pharmacol. Sci.97, 53–60 (2005). ArticleCASPubMed Google Scholar
Arimura, T., Sato, R., Machida, N., Bando, H., Zhang, D. Y., Morimoto, S. et al. Improvement of left ventricular dysfunction and survival prognosis of dilated cardiomyopathy by administration of calcium sensitizer SCH00013 in a mouse model. J. Am. Coll. Cardiol. (in press).