Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration (original) (raw)

References

  1. Weindruch, W. & Walford, R. L. The Retardation Of Aging And Diseases By Dietary Restriction (Thomas, Springfield, Illinois, 1998)
    Google Scholar
  2. Roth, G. S., Ingram, D. K. & Lane, M. A. Calorie restriction in primates: will it work and how will we know? J. Am. Geriatr. Soc. 47, 896–903 (1999)
    Article CAS Google Scholar
  3. Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59–63 (1996)
    Article ADS CAS Google Scholar
  4. Yu, B. P. Modulation of Aging Processes by Dietary Restriction (CRC Press, Boca Raton, Florida, 1994)
    Google Scholar
  5. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000)
    Article ADS CAS Google Scholar
  6. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999)
    Article CAS Google Scholar
  7. Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000)
    Article ADS CAS Google Scholar
  8. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000)
    Article ADS CAS Google Scholar
  9. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)
    Article ADS CAS Google Scholar
  10. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001)
    Article ADS CAS Google Scholar
  11. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000)
    CAS PubMed Google Scholar
  12. Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11, 241–254 (1997)
    Article CAS Google Scholar
  13. Pronk, J. T., Yde Steensma, H. & Van Dijken, J. P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607–1633 (1996)
    Article CAS Google Scholar
  14. Stryer, L. Biochemistry (Freeman, New York, 1995)
    Google Scholar
  15. Blom, J., De Mattos, M. J. & Grivell, L. A. Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4. Appl. Environ. Microbiol. 66, 1970–1973 (2000)
    Article CAS Google Scholar
  16. de Winde, J. H. & Grivell, L. A. Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol. 46, 51–91 (1993)
    Article CAS Google Scholar
  17. Forsburg, S. L. & Guarente, L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178 (1989)
    Article CAS Google Scholar
  18. Bakker, B. M. et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 25, 15–37 (2001)
    Article CAS Google Scholar
  19. Longo, V. D., Gralla, E. B. & Valentine, J. S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem. 271, 12275–12280 (1996)
    Article CAS Google Scholar
  20. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001)
    Article ADS CAS Google Scholar
  21. Melov, S. et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 289, 1567–1569 (2000)
    Article ADS CAS Google Scholar
  22. Orr, W. C. et al. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994)
    Article ADS CAS Google Scholar
  23. Taub, J. et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 399, 162–166 (1999)
    Article ADS CAS Google Scholar
  24. Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of lifespan in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001)
    Article CAS Google Scholar
  25. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999)
    Article CAS Google Scholar
  26. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J. H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524 (1996)
    Article CAS Google Scholar
  27. Hegde, P. et al. A concise guide to cDNA microarray analysis. Biotechniques 29, 548–550, 552–554, 556 (2000).
  28. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998)
    Article ADS CAS Google Scholar

Download references