Transcription-targeted DNA deamination by the AID antibody diversification enzyme (original) (raw)

References

  1. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000)
    Article CAS Google Scholar
  2. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000)
    Article CAS Google Scholar
  3. Doi, T., Kinoshita, K., Ikegawa, M., Muramatsu, M. & Honjo, T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc. Natl Acad. Sci. USA 18, 2634–2638 (2003)
    Article ADS Google Scholar
  4. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002)
    Article ADS CAS Google Scholar
  5. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002)
    Article CAS Google Scholar
  6. Manis, J. P., Tian, M. & Alt, F. W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002)
    Article CAS Google Scholar
  7. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002)
    Article CAS Google Scholar
  8. Martin, A. & Scharff, M. D. AID and mismatch repair in antibody diversification. Nature Rev. Immunol. 2, 605–614 (2002)
    Article CAS Google Scholar
  9. Papavasiliou, F. N. & Schatz, D. G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109 (suppl.), 35–44 (2002)
    Article Google Scholar
  10. Shinkura, R. et al. The effect of transcriptional orientation on endogenous switch region function. Nature Immunol. (in the press)
  11. Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (suppl.), 45–55 (2002)
    Article Google Scholar
  12. Luby, T. M., Schrader, C. E., Stavnezer, J. & Selsing, E. The mu switch region tandem repeats are important, but not required, for antibody class switch recombination. J. Exp. Med. 193, 159–168 (2001)
    Article CAS Google Scholar
  13. Stavnezer, J. Molecular processes that regulate class switching. Curr. Top. Microbiol. Immunol. 245, 127–168 (2000)
    CAS PubMed Google Scholar
  14. Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002)
    Article CAS Google Scholar
  15. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002)
    Article ADS CAS Google Scholar
  16. Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002)
    Article ADS CAS Google Scholar
  17. Papavasiliou, F. N. & Schatz, D. G. The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med. 195, 1193–1198 (2002)
    Article CAS Google Scholar
  18. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999)
    Article CAS Google Scholar
  19. Reaban, M. E. & Griffin, J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990)
    Article ADS CAS Google Scholar
  20. Daniels, G. A. & Lieber, M. R. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011 (1995)
    Article CAS Google Scholar
  21. Tian, M. & Alt, F. W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000)
    Article CAS Google Scholar
  22. Mizuta, R. et al. Molecular visualization of immunoglobulin switch region RNA/DNA complex by atomic force microscope. J. Biol. Chem. 278, 4431–4434 (2003)
    Article CAS Google Scholar
  23. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001)
    Article CAS Google Scholar
  24. Dunnick, W., Hertz, G. Z., Scappino, L. & Gritzmacher, C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 21, 365–372 (1993)
    Article CAS Google Scholar
  25. Shanmugam, A., Shi, M. J., Yauch, L., Stavnezer, J. & Kenter, A. L. Evidence for class-specific factors in immunoglobulin isotype switching. J. Exp. Med. 191, 1365–1380 (2000)
    Article CAS Google Scholar
  26. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nature Immunol. 3, 815–821 (2002)
    Article CAS Google Scholar
  27. Artsimovitch, I. & Landick, R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109, 193–203 (2002)
    Article CAS Google Scholar
  28. Storb, U. et al. _Cis_-acting sequences that affect somatic hypermutation of Ig genes. Immunol. Rev. 162, 153–160 (1998)
    Article CAS Google Scholar
  29. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions within the chromosomes of stimulated B cells. Nature Immunol. (in the press)
  30. Sartori, A. A., Schar, P., Fitz-Gibbon, S., Miller, J. H. & Jiricny, J. Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem. 276, 29979–29986 (2001)
    Article CAS Google Scholar
  31. Ramiro, A. R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M. C. Transcription enhances AID-mediated cytidine deamination by exposing ssDNA on the nontemplate strand. Nature Immunol. (in the press)

Download references