Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells (original) (raw)
References
Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity1, 661–673 (1994) CASPubMed Google Scholar
van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev.8, 757–769 (1994) CASPubMed Google Scholar
Ramalho-Santos, M. et al. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002) ADSCASPubMed Google Scholar
Park, I.-K. et al. Molecular cloning and characterization of a novel regulator of G-protein signaling from mouse hematopoietic stem cells. J. Biol. Chem.276, 915–923 (2001) CASPubMed Google Scholar
Park, I. K. et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood99, 488–498 (2002) CASPubMed Google Scholar
Lessard, J., Baban, S. & Sauvageau, G. Stage-specific expression of Polycomb group genes in human bone marrow cells. Blood91, 1216–1224 (1999) Google Scholar
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 (1998) ADSCASPubMed Google Scholar
van der Lugt, N. M. T., Alkema, M., Berns, A. & Deschamps, J. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech. Dev.58, 153–164 (1996) CASPubMed Google Scholar
Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood101, 383–389 (2003) CASPubMed Google Scholar
Morrison, S., Hemmati, H., Wandycz, A. & Weissman, I. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA92, 10302–10306 (1995) ADSCASPubMedPubMed Central Google Scholar
Wright, D. E. et al. Hematopoietic stem cells are uniquely selective in their migratory reponse to chemokines. J. Exp. Med.195, 1145–1154 (2002) CASPubMedPubMed Central Google Scholar
Mahmoudi, T. & Verrijzer, C. P. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene20, 3055–3066 (2001) CASPubMed Google Scholar
Weber, J. D. et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol.1, 20–26 (1999) ArticleADSCASPubMed Google Scholar
Jacob, J. et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999) ADS Google Scholar
Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumour suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell84, 993–1000 (1995) Google Scholar
Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp. Hematol.29, 1125–1134 (2002) Google Scholar
Lawrence, H. J. et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood89, 1922–1930 (1997) CASPubMed Google Scholar
Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA98, 14541–14546 (2001) ADSCASPubMedPubMed Central Google Scholar
Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumour suppression pathways. Cell92, 725–734 (1998) ArticleCASPubMed Google Scholar
Shivdasani, R., Mayer, E. & Orkin, S. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature373, 432–434 (1995) ADSCASPubMed Google Scholar
Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell86, 47–57 (1996) CASPubMed Google Scholar
Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell109, 39–45 (2002) CASPubMed Google Scholar
Domen, J., Cheshier, S. H. & Weissman, I. L. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of BCL-2 increases both their number and repopulation potential. J. Exp. Med.191, 253–264 (2000) CASPubMedPubMed Central Google Scholar
Nichogiannopoulou, A. et al. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med.190, 1201–1214 (1999) CASPubMedPubMed Central Google Scholar
Fisher, R. C., Lovelock, J. D. & Scott, E. W. A critical role for PU.1 in homing and long-term engraftment by hematopoietic stem cells in the bone marrow. Blood94, 1283–1290 (1999) CASPubMed Google Scholar
Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science287, 1804–1808 (2000) ADSCASPubMed Google Scholar
Ohta, H. et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J. Exp. Med.195, 759–770 (2002) CASPubMedPubMed Central Google Scholar
Pear, W., Nolan, G., Scott, M. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. U.S.A.90, 8392–8396 (1993) ADSCASPubMedPubMed Central Google Scholar
Cotta, C., Swindle, C., Weissman, I. L. & Klug, C. A. Retroviral Transduction of FACS-Purified Hematopoietic Stem Cells (eds Klug, C. A. & Jordan, C. T.) 243–252 (Humana Press, Totowa, New Jersey, 2001) Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature advance online publication, 20 April 2003 (doi: 10.1038/nature01572)