RanGTP mediates nuclear pore complex assembly (original) (raw)

References

  1. Vasu, S. K. & Forbes, D. J. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol. 13, 363–375 (2001)
    Article CAS Google Scholar
  2. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001)
    Article CAS Google Scholar
  3. Bodoor, K. et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J. Cell Sci. 112, 2253–2264 (1999)
    CAS PubMed Google Scholar
  4. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001)
    Article CAS Google Scholar
  5. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001)
    Article CAS Google Scholar
  6. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003)
    Article CAS Google Scholar
  7. Harel, A. et al. Removal of a single pore subunit results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003)
    Article CAS Google Scholar
  8. Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432 (2000)
    Article CAS ADS Google Scholar
  9. Hetzer, M., Bilbao-Cortes, D., Walther, T. C., Gruss, O. J. & Mattaj, I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell 5, 1013–1024 (2000)
    Article CAS Google Scholar
  10. Bamba, C., Bobinnec, Y., Fukuda, M. & Nishida, E. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr. Biol. 12, 503–507 (2002)
    Article CAS Google Scholar
  11. Askjaer, P., Galy, V., Hannak, E. & Mattaj, I. W. Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol. Biol. Cell 13, 4355–4370 (2002)
    Article CAS Google Scholar
  12. Zhang, C., Goldberg, M. W., Moore, W. J., Allen, T. D. & Clarke, P. R. Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. Eur. J. Cell Biol. 81, 623–633 (2002)
    Article CAS Google Scholar
  13. Ryan, K. J., McCaffery, J. M. & Wente, S. R. The Ran GTPase cycle is required for yeast nuclear pore complex assembly. J. Cell Biol. 160, 1041–1053 (2003)
    Article CAS Google Scholar
  14. Davis, L. I. & Blobel, G. Identification and characterization of a nuclear pore complex protein. Cell 45, 699–709 (1986)
    Article CAS Google Scholar
  15. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994)
    Article CAS ADS Google Scholar
  16. Klebe, C., Prinz, H., Wittinghofer, A. & Goody, R. S. The kinetic mechanism of Ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552 (1995)
    Article CAS Google Scholar
  17. Kessel, R. G. Annulate lamellae: a last frontier in cellular organelles. Int. Rev. Cytol. 133, 43–120 (1992)
    Article CAS Google Scholar
  18. Dabauvalle, M. C., Loos, K., Merkert, H. & Scheer, U. Spontaneous assembly of pore complex-containing membranes (“annulate lamellae”) in Xenopus egg extract in the absence of chromatin. J. Cell Biol. 112, 1073–1082 (1991)
    Article CAS Google Scholar
  19. Macaulay, C., Meier, E. & Forbes, D. J. Differential mitotic phosphorylation of proteins of the nuclear pore complex. J. Biol. Chem. 270, 254–262 (1995)
    Article CAS Google Scholar
  20. Murray, A. in Cell Cycle Extracts in Xenopus laevis. Practical Uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic, San Diego, 1991)
    Book Google Scholar
  21. Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol. 148, 883–898 (2000)
    Article CAS Google Scholar
  22. Rout, M. P. & Aitchison, J. D. The nuclear pore complex as a transport machine. J. Biol. Chem. 276, 16593–16596 (2001)
    Article CAS Google Scholar
  23. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Gorlich, D. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153–1163 (1997)
    Article CAS Google Scholar
  24. Hinkle, B. et al. Chromosomal association of Ran during meiotic and mitotic divisions. J. Cell Sci. 115, 4685–4693 (2002)
    Article CAS Google Scholar
  25. Bayliss, R., Littlewood, T., Strawn, L. A., Wente, S. R. & Stewart, M. GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J. Biol. Chem. 277, 50597–50606 (2002)
    Article CAS Google Scholar
  26. Zhang, C., Hutchins, J. R., Muhlhausser, P., Kutay, U. & Clarke, P. R. Role of importin-beta in the control of nuclear envelope assembly by Ran. Curr. Biol. 12, 498–502 (2002)
    Article CAS Google Scholar
  27. Lusk, C. P., Makhnevych, T., Marelli, M., Aitchison, J. D. & Wozniak, R. W. Karyopherins in nuclear pore biogenesis: a role for Kap121 in the assembly of Nup53p into nuclear pore complexes. J. Cell Biol. 159, 267–278 (2002)
    Article CAS Google Scholar
  28. Demeter, J., Morphew, M. & Sazer, S. A mutation in the RCC1-related protein pim1 results in nuclear envelope fragmentation in fission yeast. Proc. Natl Sci. USA 92, 1436–1440 (1995)
    Article CAS ADS Google Scholar
  29. Griffiths, G. Fine Structure Immuno-cytochemistry 137–191 (Springer, Berlin, 1993)
    Google Scholar
  30. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854–857 (1998)
    Article CAS ADS Google Scholar

Download references