A gene expression atlas of the central nervous system based on bacterial artificial chromosomes (original) (raw)

References

  1. Ramon y Cajal, S. Histology of the Nervous System (Oxford Univ. Press, New York, 1911)
    Google Scholar
  2. Heintz, N. BAC to the future: the use of BAC transgenic mice for neuroscience research. Nature Rev. Neurosci. 2, 861–870 (2001)
    Article CAS Google Scholar
  3. Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol. 15, 859–865 (1997)
    Article CAS Google Scholar
  4. Gong, S., Yang, X., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res. 12, 1992–1998 (2002)
    Article CAS Google Scholar
  5. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001)
    Article CAS Google Scholar
  6. Gottlieb, S. et al. The DiGeorge syndrome minimal critical region contains a goosecoid-like (GSCL) homeobox gene that is expressed early in human development. Am. J. Hum. Genet. 60, 1194–1201 (1997)
    CAS PubMed PubMed Central Google Scholar
  7. Gottlieb, S., Hanes, S. D., Golden, J. A., Oakey, R. J. & Budarf, M. L. Goosecoid-like, a gene deleted in DiGeorge and velocardiofacial syndromes, recognizes DNA with a bicoid-like specificity and is expressed in the developing mouse brain. Hum. Mol. Genet. 7, 1497–1505 (1998)
    Article CAS Google Scholar
  8. Valjakka, A. et al. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull. 47, 171–184 (1998)
    Article CAS Google Scholar
  9. Emanuel, B. S., McDonald-McGinn, D., Saitta, S. C. & Zackai, E. H. The 22q11.2 deletion syndrome. Adv. Pediatr. 48, 39–73 (2001)
    CAS PubMed Google Scholar
  10. Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000)
    Article CAS Google Scholar
  11. Nakamura, F., Kalb, R. G. & Strittmatter, S. M. Molecular basis of semaphorin-mediated axon guidance. J. Neurobiol. 44, 219–229 (2000)
    Article CAS Google Scholar
  12. Chen, H., He, Z. & Tessier-Lavigne, M. Axon guidance mechanisms: semaphorins as simultaneous repellents and anti-repellents. Nature Neurosci. 1, 436–439 (1998)
    Article CAS Google Scholar
  13. Takahashi, T., Nakamura, F., Jin, Z., Kalb, R. G. & Strittmatter, S. M. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nature Neurosci. 1, 487–493 (1998)
    Article CAS Google Scholar
  14. Baird, D. H., Hatten, M. E. & Mason, C. A. Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro. J. Neurosci. 12, 619–634 (1992)
    Article CAS Google Scholar
  15. Walz, A., Rodriguez, I. & Mombaerts, P. Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J. Neurosci. 22, 4025–4035 (2002)
    Article CAS Google Scholar
  16. Sachs, G. M. & Schneider, G. E. The morphology of optic tract axons arborizing in the superior colliculus of the hamster. J. Comp. Neurol. 230, 155–167 (1984)
    Article CAS Google Scholar
  17. Sachs, G. M., Jacobson, M. & Caviness, V. S. Jr. Postnatal changes in arborization patterns of murine retinocollicular axons. J. Comp. Neurol. 246, 395–408 (1986)
    Article CAS Google Scholar
  18. Edwards, M. A., Caviness, V. S. Jr & Schneider, G. E. Development of cell and fiber lamination in the mouse superior colliculus. J. Comp. Neurol. 248, 395–409 (1986)
    Article CAS Google Scholar
  19. Edwards, M. A., Schneider, G. E. & Caviness, V. S. Jr. Development of the crossed retinocollicular projection in the mouse. J. Comp. Neurol. 248, 410–421 (1986)
    Article CAS Google Scholar
  20. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88 (2000)
    Article CAS Google Scholar
  21. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000)
    Article CAS Google Scholar
  22. Yates, P. A., Roskies, A. L., McLaughlin, T. & O'Leary, D. D. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J. Neurosci. 21, 8548–8563 (2001)
    Article CAS Google Scholar
  23. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. R. Interneuron migration from basal forebrain to neocortex dependence on Dlx genes. Science 278, 474–476 (1997)
    Article ADS CAS Google Scholar
  24. Marin, O. & Rubenstein, J. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001)
    Article CAS Google Scholar
  25. Hatten, M. New directions in neuronal migration. Science 297, 1660–1663 (2002)
    Article ADS CAS Google Scholar
  26. Lavdas, A. A., Grigoriou, M., Pchnis, V. & Rubernstein, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999)
    Article CAS Google Scholar
  27. Ross, C., MacCumber, M., Glatt, C. & Snyder, S. Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc. Natl Acad. Sci. USA 86, 2923–2927 (1989)
    Article ADS CAS Google Scholar
  28. Rybalkin, S., Rybalkina, I., Beavo, J. & Bornfeldt, K. Cyclic nucleotide phosphodiesterase 1C promotes human arterial smooth muscle proliferation. Circ. Res. 90, 151–157 (2002)
    Article CAS Google Scholar
  29. Meyer, G., Soria, J. M., Martinez-Galan, J. R., Martin-Clemente, B. & Fairen, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998)
    Article CAS Google Scholar
  30. Derer, P. & Derer, M. Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 36, 839–856 (1990)
    Article CAS Google Scholar
  31. D'Arcangelo, G. et al. Reelin is a secreted protein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31 (1997)
    Article CAS Google Scholar
  32. Wang, X., Zhong, P. & Yan, Z. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J. Neurosci. 22, 9185–9193 (2002)
    Article CAS Google Scholar
  33. Frantz, G., Weimann, J., Levin, M. & McConnell, S. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci. 14, 5725–5740 (1994)
    Article CAS Google Scholar
  34. Weimann, J. et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819–831 (1999)
    Article CAS Google Scholar
  35. Nicola, S., Surmeier, J. & Malenka, R. Dopamine modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000)
    Article CAS Google Scholar
  36. Le Moine, C. & Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neurol. 355, 418–426 (1995)
    Article CAS Google Scholar
  37. Surmeier, J., Song, W.-J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996)
    Article CAS Google Scholar
  38. Hersh, S. et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J. Neurosci. 15, 5222–5237 (1995)
    Article Google Scholar
  39. Bernard, V., Levey, A. & Bloch, B. Regulation of the subcellular distribution of M4 muscarinic acetyl choline receptors in striatal neurons in vivo by the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulation. J. Neurosci. 19, 10237–10249 (1999)
    Article CAS Google Scholar
  40. Gerfen, C. R. & Young, W. S. III Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res. 460, 161–167 (1988)
    Article CAS Google Scholar
  41. Lee, E. C. et al. A highly efficient _Escherichia coli_-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001)
    Article CAS Google Scholar
  42. Muyrers, J. P., Zhang, Y., Testa, G. & Stewart, A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999)
    Article CAS Google Scholar
  43. Metcalf, W. W. et al. Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13 (1996)
    Article CAS Google Scholar
  44. Paxinos, G. & Franklin, K. The Mouse Brain in Stereotaxic Coordinates 132 (Academic, San Diego, 2001)
    Google Scholar
  45. Valverde, F. Golgi Atlas of the Postnatal Mouse Brain (Springer, Vienna, 1998)
    Book Google Scholar
  46. Schambra, U., Lauder, J. & Silver, J. Atlas of the Prenatal Mouse Brain (Academic, San Diego, 1992)
    Google Scholar

Download references