A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals (original) (raw)
Truchet, G. et al. Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet.219, 65–68 (1989) ArticleCAS Google Scholar
Truchet, G. et al. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature351, 670–673 (1991) ArticleADSCAS Google Scholar
Spaink, H. P. et al. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature354, 125–130 (1991) ArticleADSCAS Google Scholar
Lerouge, P. et al. Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acetylated glucosamine oligosaccharide signal. Nature344, 781–784 (1990) ArticleADSCAS Google Scholar
Lopez-Lara, I. M. et al. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol. Microbiol.15, 627–638 (1995) ArticleCAS Google Scholar
Niwa, S. et al. Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Mol. Plant Microbe Interact.14, 848–856 (2001) ArticleCAS Google Scholar
Long, S. R. Rhizobium symbiosis: nod factors in perspective. Plant Cell8, 1885–1898 (1996) ArticleCAS Google Scholar
Ardourel, M. et al. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell6, 1357–1374 (1994) ArticleCAS Google Scholar
Pacios-Bras, C. et al. A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarum. Mol. Plant Microbe Interact.13, 475–479 (2000) ArticleCAS Google Scholar
Radutoiu, S. et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature425, 585–592 (2003) ArticleADSCAS Google Scholar
Wegel, E., Schauser, L., Sandal, N., Stougaard, J. & Parniske, M. Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol. Plant Microbe Interact.11, 933–936 (1998) ArticleCAS Google Scholar
Stougaard, J. Genetics and genomics of root symbiosis. Curr. Opin. Plant Biol.4, 328–335 (2001) ArticleCAS Google Scholar
Sandal, N. et al. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics161, 1673–1683 (2002) CASPubMedPubMed Central Google Scholar
Nakamura, Y. et al. Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-Mb regions of the genome. DNA Res.9, 63–70 (2002) ArticleCAS Google Scholar
Steen, A. et al. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem.278, 23874–23881 (2003) ArticleCAS Google Scholar
Butler, A. R., O'Donnell, R. W., Martin, V. J., Gooday, G. W. & Stark, M. J. Kluyveromyces lactis toxin has an essential chitinase activity. Eur. J. Biochem.199, 483–488 (1991) ArticleCAS Google Scholar
Amon, P., Haas, E. & Sumper, M. The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox. Plant Cell10, 781–789 (1998) ArticleCAS Google Scholar
Schenk, P. W. & Snaar-Jagalska, B. E. Signal perception and transduction: the role of protein kinases. Biochim. Biophys. Acta1449, 1–24 (1999) ArticleCAS Google Scholar
Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell109, 275–282 (2002) ArticleCAS Google Scholar
Duc, G. & Messager, A. Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci.60, 207–213 (1989) Article Google Scholar
Kneen, B. E., Weeden, N. F. & LaRue, T. A. Non-nodulating mutants of Pisum sativum (L.) cv. Sparkle. J. Hered.85, 129–132 (1994) Article Google Scholar
Schneider, A. et al. Mapping of the nodulation loci sym9 and sym10 of pea (Pisum sativumL). Theor. Appl. Genet.104, 1312–1316 (2002) ArticleCAS Google Scholar
Stracke, S. et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature417, 959–962 (2002) ArticleADSCAS Google Scholar
Engvild, K. C. Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor. Appl. Genet.74, 711–713 (1987) ArticleCAS Google Scholar
Wikstrom, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. Lond. B268, 2211–2220 (2001) ArticleCAS Google Scholar
Bateman, A. & Bycroft, M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol.299, 1113–1119 (2000) ArticleCAS Google Scholar
Schauser, L. et al. Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol. Gen. Genet.259, 414–423 (1998) ArticleCAS Google Scholar
Szczyglowski, K. et al. Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol. Plant Microbe Interact.11, 684–697 (1998) ArticleCAS Google Scholar
Handberg, K. & Stougaard, J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J.2, 487–496 (1992) Article Google Scholar
Stougaard, J. Agrobacterium rhizogenes as a vector for transforming higher plants. Methods Mol. Biol.49, 49–61 (1995) CASPubMed Google Scholar
Krusell, L. et al. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature420, 422–426 (2002) ArticleADSCAS Google Scholar