Bone recognition mechanism of porcine osteocalcin from crystal structure (original) (raw)

References

  1. Hauschka, P. V., Lian, J. B., Cole, D. E. C. & Gundberg, C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989)
    Article CAS Google Scholar
  2. Calvo, M. S., Eyre, D. R. & Caren, M. G. Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev. 17, 333–368 (1996)
    CAS PubMed Google Scholar
  3. Hauschka, P. V. & Reid, M. L. Timed appearance of a calcium-binding protein containing γ-carboxyglutamic acid in developing chick bone. Dev. Biol. 65, 431–436 (1978)
    Article Google Scholar
  4. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996)
    Article ADS CAS Google Scholar
  5. Poser, J. W. & Price, P. A. A method for decarboxylation of γ-carboxyglutamic acid in proteins. J. Biol. Chem. 254, 431–436 (1979)
    CAS PubMed Google Scholar
  6. Chenu, C. et al. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Biol. Chem. 127, 1149–1158 (1994)
    CAS Google Scholar
  7. Bodine, P. V. & Komm, B. S. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone 25, 535–543 (1999)
    Article CAS Google Scholar
  8. Atkinson, R. A. et al. Conformational studies of osteocalcin in solution. Eur. J. Biochem. 232, 515–521 (1995)
    Article CAS Google Scholar
  9. Dowd, T. L., Rosen, J. F., Li, L. & Gundberg, C. M. The three-dimensional structure of bovine calcium ion-bound osteocalcin using 1H NMR spectroscopy. Biochemistry 42, 7769–7779 (2003)
    Article CAS Google Scholar
  10. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985)
    Article CAS Google Scholar
  11. Hohm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)
    Article Google Scholar
  12. Pastoureau, P., Vergnaud, P., Meunier, P. J. & Delmas, P. D. Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. J. Bone Miner. Res. 8, 1417–1426 (1993)
    Article CAS Google Scholar
  13. Kay, M. I., Young, R. A. & Posner, A. S. The crystal structure of hydroxyapatite. Nature 204, 1050–1052 (1964)
    Article ADS CAS Google Scholar
  14. Klein, C. & Hurlbut, C. S. Manual of Mineralogy 21st edn (Wiley, New York, 1999)
    Google Scholar
  15. Onuma, K., Ito, A., Tateishi, T. & Kameyama, T. Growth kinetics of hydroxyapatite crystal revealed by atomic force microscopy. J. Cryst. Growth 154, 118–125 (1995)
    Article ADS CAS Google Scholar
  16. Eppell, S. J., Tong, W., Katz, J. L., Kuhn, L. & Glimcher, M. J. Shape and size of isolated bone mineralites measured using atomic force microscopy. J. Orthop. Res. 19, 1027–1034 (2001)
    Article CAS Google Scholar
  17. Ziv, V., Wagner, H. D. & Weiner, S. Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18, 417–428 (1996)
    Article CAS Google Scholar
  18. Davies, P. L., Baardsnes, J., Kuiper, M. J. & Walker, V. K. Structure and function of antifreeze proteins. Phil. Trans. R. Soc. Lond. B 357, 927–935 (2002)
    Article CAS Google Scholar
  19. Yang, D. S. et al. Identification of the ice-binding surface on a type III antifreeze protein with a ‘flatness function’ algorithm. Biophys. J. 74, 2142–2151 (1998)
    Article ADS CAS Google Scholar
  20. Mundy, G. R. & Poser, J. W. Chemotactic activity of the γ-carboxyglutamic acid-containing protein in bone. Calcif. Tissue Int. 35, 164–168 (1983)
    Article CAS Google Scholar
  21. Colombo, G., Fanti, P., Yao, C. & Halluche, H. H. Isolation and complete amino acid sequence of osteocalcin from canine bone. J. Bone Miner. Res. 8, 733–743 (1993)
    Article CAS Google Scholar
  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS Google Scholar
  23. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)
    Article CAS Google Scholar
  24. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 1863–1871 (1999)
    Article Google Scholar
  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  26. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS Google Scholar
  27. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976)
    Article ADS Google Scholar
  28. Collaborative Computational Project Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  29. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, 2002)
    Google Scholar
  30. Laue, T. M., Shah, B. D., Ridgeway, T. M. & Pelletier, S. L. Biochemistry and Polymer Science (Royal Society of Chemistry, London, 1992)
    Google Scholar

Download references