Proteomic characterization of the human centrosome by protein correlation profiling (original) (raw)
References
Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol.14, 25–34 (2002) ArticleCAS Google Scholar
Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol.2, 688–698 (2001) ArticleCAS Google Scholar
Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer2, 815–825 (2002) ArticleCAS Google Scholar
Hinchcliffe, E. H. & Sluder, G. ‘It takes two to tango’: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev.15, 1167–1181 (2001) ArticleCAS Google Scholar
Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol.11, 413–419 (2001) ArticleCAS Google Scholar
Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003) ArticleADSCAS Google Scholar
Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol.141, 967–977 (1998) ArticleCAS Google Scholar
Bornens, M. & Moudjou, M. Studying the composition and function of centrosomes in vertebrates. Methods Cell Biol.61, 13–34 (1999) ArticleCAS Google Scholar
Kellogg, D. R., Moritz, M. & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem.63, 639–674 (1994) ArticleCAS Google Scholar
Pietromonaco, S. F., Seluja, G. A., Aitken, A. & Elias, L. Association of 14-3-3 proteins with centrosomes. Blood Cells Mol. Dis.22, 225–237 (1996) ArticleCAS Google Scholar
Lange, B. M., Bachi, A., Wilm, M. & Gonzalez, C. Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J.19, 1252–1262 (2000) ArticleCAS Google Scholar
Brown, C. R., Doxsey, S. J., Hong-Brown, L. Q., Martin, R. L. & Welch, W. J. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J. Biol. Chem.271, 824–832 (1996) ArticleCAS Google Scholar
Gergely, F. et al. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl Acad. Sci. USA97, 14352–14357 (2000) ArticleADSCAS Google Scholar
Gascard, P. et al. Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation. Blood92, 4404–4414 (1998) CASPubMed Google Scholar
Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell5, 113–125 (2003) ArticleCAS Google Scholar
Chang, P. & Stearns, T. Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nature Cell Biol.2, 30–35 (2000) ArticleCAS Google Scholar
Klotz, C. et al. Parthenogenesis in Xenopus eggs requires centrosomal integrity. J. Cell Biol.110, 405–415 (1990) ArticleCAS Google Scholar
Nakagawa, Y., Yamane, Y., Okanoue, T. & Tsukita, S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell12, 1687–1697 (2001) ArticleCAS Google Scholar
Popovici, C. et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood93, 1381–1389 (1999) CASPubMed Google Scholar
Hearn, T. et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nature Genet.31, 79–83 (2002) ArticleCAS Google Scholar
Collin, G. B. et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nature Genet.31, 74–78 (2002) ArticleCAS Google Scholar
Romio, L. et al. OFD1, the gene mutated in oral–facial–digital syndrome type 1, is expressed in the metanephros and in human embryonic renal mesenchymal cells. J. Am. Soc. Nephrol.14, 680–689 (2003) ArticleCAS Google Scholar
Lamond, A. I. & Mann, M. Cell biology and the genome projects—a concerted strategy for characterizing multi-protein complexes using mass spectrometry. Trends Cell Biol.7, 139–142 (1997) ArticleCAS Google Scholar
Mayor, T., Stierhof, Y. D., Tanaka, K., Fry, A. M. & Nigg, E. A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol.151, 837–846 (2000) ArticleCAS Google Scholar
Ohta, T. et al. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol.156, 87–99 (2002) ArticleMathSciNetCAS Google Scholar
Pfannenschmid, F. et al. Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J. Cell Sci.116, 1449–1462 (2003) ArticleCAS Google Scholar
Kenedy, A. A., Cohen, K. J., Loveys, D. A., Kato, G. J. & Dang, C. V. Identification and characterization of the novel centrosome-associated protein CCCAP. Gene303, 35–46 (2003) ArticleCAS Google Scholar
Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell3, 339–350 (2002) ArticleCAS Google Scholar
Yang, J. et al. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol.159, 431–440 (2002) ArticleCAS Google Scholar
Kilmartin, J. V. Sif1p has conserved centrin-binding sites and an essential function in building yeast spindle pole body duplication. J. Cell Biol.162, 1211–1221 (2003) ArticleCAS Google Scholar