Proteomic characterization of the human centrosome by protein correlation profiling (original) (raw)

References

  1. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002)
    Article CAS Google Scholar
  2. Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001)
    Article CAS Google Scholar
  3. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002)
    Article CAS Google Scholar
  4. Hinchcliffe, E. H. & Sluder, G. ‘It takes two to tango’: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001)
    Article CAS Google Scholar
  5. Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413–419 (2001)
    Article CAS Google Scholar
  6. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)
    Article ADS CAS Google Scholar
  7. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 (1998)
    Article CAS Google Scholar
  8. Bornens, M. & Moudjou, M. Studying the composition and function of centrosomes in vertebrates. Methods Cell Biol. 61, 13–34 (1999)
    Article CAS Google Scholar
  9. Kellogg, D. R., Moritz, M. & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639–674 (1994)
    Article CAS Google Scholar
  10. Pietromonaco, S. F., Seluja, G. A., Aitken, A. & Elias, L. Association of 14-3-3 proteins with centrosomes. Blood Cells Mol. Dis. 22, 225–237 (1996)
    Article CAS Google Scholar
  11. Lange, B. M., Bachi, A., Wilm, M. & Gonzalez, C. Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262 (2000)
    Article CAS Google Scholar
  12. Brown, C. R., Doxsey, S. J., Hong-Brown, L. Q., Martin, R. L. & Welch, W. J. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J. Biol. Chem. 271, 824–832 (1996)
    Article CAS Google Scholar
  13. Gergely, F. et al. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl Acad. Sci. USA 97, 14352–14357 (2000)
    Article ADS CAS Google Scholar
  14. Gascard, P. et al. Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation. Blood 92, 4404–4414 (1998)
    CAS PubMed Google Scholar
  15. Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–125 (2003)
    Article CAS Google Scholar
  16. Chang, P. & Stearns, T. Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nature Cell Biol. 2, 30–35 (2000)
    Article CAS Google Scholar
  17. Klotz, C. et al. Parthenogenesis in Xenopus eggs requires centrosomal integrity. J. Cell Biol. 110, 405–415 (1990)
    Article CAS Google Scholar
  18. Nakagawa, Y., Yamane, Y., Okanoue, T. & Tsukita, S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell 12, 1687–1697 (2001)
    Article CAS Google Scholar
  19. Popovici, C. et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood 93, 1381–1389 (1999)
    CAS PubMed Google Scholar
  20. Hearn, T. et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nature Genet. 31, 79–83 (2002)
    Article CAS Google Scholar
  21. Collin, G. B. et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nature Genet. 31, 74–78 (2002)
    Article CAS Google Scholar
  22. Romio, L. et al. OFD1, the gene mutated in oral–facial–digital syndrome type 1, is expressed in the metanephros and in human embryonic renal mesenchymal cells. J. Am. Soc. Nephrol. 14, 680–689 (2003)
    Article CAS Google Scholar
  23. Lamond, A. I. & Mann, M. Cell biology and the genome projects—a concerted strategy for characterizing multi-protein complexes using mass spectrometry. Trends Cell Biol. 7, 139–142 (1997)
    Article CAS Google Scholar
  24. Mayor, T., Stierhof, Y. D., Tanaka, K., Fry, A. M. & Nigg, E. A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000)
    Article CAS Google Scholar
  25. Ohta, T. et al. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156, 87–99 (2002)
    Article MathSciNet CAS Google Scholar
  26. Pfannenschmid, F. et al. Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J. Cell Sci. 116, 1449–1462 (2003)
    Article CAS Google Scholar
  27. Kenedy, A. A., Cohen, K. J., Loveys, D. A., Kato, G. J. & Dang, C. V. Identification and characterization of the novel centrosome-associated protein CCCAP. Gene 303, 35–46 (2003)
    Article CAS Google Scholar
  28. Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339–350 (2002)
    Article CAS Google Scholar
  29. Yang, J. et al. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol. 159, 431–440 (2002)
    Article CAS Google Scholar
  30. Kilmartin, J. V. Sif1p has conserved centrin-binding sites and an essential function in building yeast spindle pole body duplication. J. Cell Biol. 162, 1211–1221 (2003)
    Article CAS Google Scholar

Download references