Substrate twinning activates the signal recognition particle and its receptor (original) (raw)

References

  1. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)
    Article CAS PubMed Google Scholar
  2. Stroud, R. M. & Walter, P. Signal sequence recognition and protein targeting. Curr. Opin. Struct. Biol. 9, 754–759 (1999)
    Article CAS PubMed Google Scholar
  3. Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002)
    Article ADS CAS PubMed Google Scholar
  4. Rinke-Appel, J. et al. Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh. RNA 8, 612–625 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  5. Gilmore, R., Blobel, G. & Walter, P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95, 463–469 (1982)
    Article CAS PubMed Google Scholar
  6. Meyer, D. I., Krause, E. & Dobberstein, B. Secretory protein translocation across membranes—the role of the ‘docking protein’. Nature 297, 647–650 (1982)
    Article ADS CAS PubMed Google Scholar
  7. Walter, P. & Blobel, G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 77, 7112–7116 (1980)
    Article ADS CAS PubMed PubMed Central Google Scholar
  8. Gilmore, R., Walter, P. & Blobel, G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95, 470–477 (1982)
    Article CAS PubMed Google Scholar
  9. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome–Sec61 complex. Science 278, 2123–2126 (1997)
    Article ADS CAS PubMed Google Scholar
  10. Menetret, J. F. et al. The structure of ribosome–channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000)
    Article CAS PubMed Google Scholar
  11. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)
    Article CAS PubMed Google Scholar
  12. Miller, J. D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366, 351–354 (1993)
    Article ADS CAS PubMed Google Scholar
  13. Miller, J. D., Bernstein, H. D. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994)
    Article ADS CAS PubMed Google Scholar
  14. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995)
    Article ADS CAS PubMed Google Scholar
  15. Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998)
    Article CAS PubMed Google Scholar
  16. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368 (1997)
    Article ADS CAS PubMed Google Scholar
  17. Freymann, D. M., Keenan, R. J., Stroud, R. M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997)
    Article ADS CAS PubMed Google Scholar
  18. Ramirez, U. D. et al. Structural basis for mobility in the 1.1 Å crystal structure of the NG domain of Thermus aquaticus Ffh. J. Mol. Biol. 320, 783–799 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  19. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001)
    Article ADS CAS PubMed Google Scholar
  20. Montoya, G., Kaat, K., Moll, R., Schafer, G. & Sinning, I. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP–SRP receptor complex. Struct. Fold. Des. 8, 515–525 (2000)
    Article CAS Google Scholar
  21. Rapiejko, P. J. & Gilmore, R. Empty site forms of the SRP54 and SR α GTPases mediate targeting of ribosome–nascent chain complexes to the endoplasmic reticulum. Cell 89, 703–713 (1997)
    Article CAS PubMed Google Scholar
  22. Peluso, P., Shan, S. O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001)
    Article CAS PubMed Google Scholar
  23. Shan, S. & Walter, P. Induced nucleotide specificity in a GTPase. Proc. Natl Acad. Sci. USA 100, 4480–4485 (2003)
    Article ADS CAS PubMed PubMed Central Google Scholar
  24. Padmanabhan, S. & Freymann, D. M. The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Structure 9, 859–867 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  25. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  26. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP × AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997)
    Article ADS CAS PubMed Google Scholar
  27. Seewald, M. J., Korner, C., Wittinghofer, A. & Vetter, I. R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662–666 (2002)
    Article ADS CAS PubMed Google Scholar
  28. Tesmer, J. J., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4-activated Gi α1: Stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997)
    Article CAS PubMed Google Scholar
  29. Srinivassa, S. P., Watson, N., Overton, M. C. & Blumer, K. J. Mechanism of RGS4, a GTPase-activating protein for G-protein α subunits. J. Biol. Chem. 273, 1529–1533 (1998)
    Article Google Scholar
  30. Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001)
    Article ADS CAS PubMed Google Scholar
  31. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science (in the press)
  32. Otwinowski, Z. & Minor, W. Processing X-ray data in oscillation mode. Methods Enzymol. 276, 307–326 (1996)
    Article Google Scholar
  33. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001)
    Article CAS PubMed Google Scholar
  34. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS PubMed Google Scholar
  35. Muller, K. et al. Moloc. Bull. Soc. Chim. Belg. 97, 655–667 (1988)
    Article Google Scholar
  36. Shepotinovskaya, I. V. & Freymann, D. M. Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY. Biochim. Biophys. Acta 1597, 107–114 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  37. DeLano, W. L. The PyMOL Molecular Graphics Systemhttp://www.pymol.org/〉 2003).
  38. Philipssen, A. DINO: Visualizing Structural Biologyhttp://www.dino3d.org〉 (2002).

Download references